Introduction	Experiments	Theory	Application	References

Quantum Mechanics A Gentle Introduction

Sebastian Riese

27.12.2018

Introduction	Experiments	Theory	Application	References

Introduction

Experiments

Theory

Application

Introduction	Experiments	Theory	Application	References
6				

Concept of This Talk

- key experiments will be reviewed
- not historical: make the modern theory plausible using historical experiments, leave the history be history, modify the experiments to make a point
- quantum mechanics is quite abstract and not "anschaulich" so we will need mathematics (linear algebra, differential equations)
- we'll try to find a new, post-classical, "Anschaulichkeit" however in the end the adage "shut up and calculate" holds
- we'll include maths crash courses where we need them (mathematicians will suffer, sorry guys and gals)

How Scientific Theories Work

- ▶ a scientific theory is a net of interdependent propositions
- when extending the theory different propositions are proposed as hypotheses
- ▶ the hypotheses that stand the experimental test are added to the theory
- new experimental results are either consistent or inconsistent with the propositions of the theory
- if they are inconsistent, some of the propositions have been *falsified*, and the theory must be amended in the minimal (*Occam's razor*) way that makes it consistent with all experimental results
- new theoretical ideas must explain why the old ones worked

Introd	uction	Experiments	Theory	Application	References
Ho	w It All Began				
	time frame:	late 19 th /early 20 th cen	tury		

- known fundamental theories of physics:
 - classical mechanics (*F* = m*a*)
 - Newtonian gravitation ($\boldsymbol{F} = Gm_1m_2\frac{r_1-r_2}{|r_1-r_2|^3}$)
 - Maxwellian electrodynamics ($\partial_{\mu}F^{\mu\nu} = 4\pi j^{\nu}$, Lorentz force)
 - (Maxwell-Boltzmann classical statistical physics)
- several experimental results could not be explained by the classical physical theories under reasonable assumptions, e.g.
 - photoelectric effect (Hertz and Hallwachs 1887)
 - discrete spectral lines of atoms (Fraunhofer 1815, Bunsen and Kirchhoff 1858)
 - radioactive rays: single spots on photographic plates
 - stability of atoms composed of compact, positively charged nuclei (Rutherford 1909) and negatively charged cathode ray particles (Thomson 1897)

Introduction	Experiments	Theory	Application	References

Cathode Rays

Figure: Schematic of an Electron Gun

- to-do list
 - 1. have a heated cathode, a simple electrostatic accelerator and a pinhole (an "electron gun")
 - 2. put it in an evacuated tube (if there's some well chosen gas left it'll glow nicely)
 - 3. play around (tips: magnetic fields, electric fields, fluorescent screens, etc.)
- results: there are negatively charged particles that can be separated from metal electrodes, hydrogen gas, etc.
- atoms are neutral conclusion: there is a positively charged component as well

Rutherford(-Marsden-Geiger) Experiment

Figure: Schematic of the Rutherford Experiment

- measure the deflection angles of a particles shot perpendicularly through a thin gold foil
- \blacktriangleright weird result: some of the α are deflected strongly
- conclusion from deflection calculations for different charge/mass distributions: atoms must contain a small and massive concentration of mass and charge (the *nucleus*)

Introduction	Experiments	Theory	Application	References

Atoms Are Stable!?

- accelerated charges always radiate classically (Maxwell equations)
- to form stable atoms the electrons have to be bound to the nuclei in some orbits implying accelerated motion
- \Rightarrow classical electrodynamics and the above = WAT
- so the simple experimental fact that there are stable atoms nukes classical physics (plus reasonable assumptions)

Introduction	Experiments	Theory	Application	References

Photoelectric Effect

Figure: Schematic of a Phototube

- a current flows when light falls on a metal surface in a vacuum (phototube)
- ► when biasing the electrodes with a voltage U_B no current flows above some threshold voltage U_T
- \blacktriangleright the threshold voltage is proportional to the wavelength λ of the light
- ► for different metals there are different threshold wavelengths, below which no current flows for $U_B = 0$

Spectral Lines of Atoms – Experimental Setup

Figure: Schematic of a Discharge Tube and Spectrograph

- discrete emission lines together with the photon hypothesis: discrete energies!
- characteristic spectra for each atom species
- absorption lines complementary to the emission lines

Davisson-Germer Experiment

Figure: Schematic: Davisson-Germer Experiment

- the electrons show a diffraction pattern (that can be seen by moving the Faraday cup around)
- we can determing the wavelength of the matter wave from the diffraction pattern (and the lattice parameters of the crystal)
- ► this confirms the de Broglie relation

Introduction	Experiments	Theory	Application	References

Radioactivity and Experiments with Single Particles

- radioactivity is random you can't predict when the next decay will happen this hints at the intrinsic randomness of subatomic physics
- we can do interference experiments with single particles, to do so we need a set of sensitive detectors
- ► at most one of a set of such sensors detects the electron or photon
- while the particle is extended in transit, it will be forced to a sharp measurement result on detection!
- if we do a double slit interference experiment and *detect* which slit the particle went through, then the interference pattern vanishes!
- if we do the above and then discard the which-way-information in a coherent manner there will again be interference (quantum eraser)

Introduction	Experiments	Theory	Application	References
Crash Course:	Complex Numbers			

Figure: Complex Plane

▶ $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}$, $i^2 = -1$, usual rules of calculation

- can be thought of as *phasors* in the complex plane
- polar representation: $z = \rho(\cos(\varphi) + i\sin(\varphi)) = \rho e^{i\varphi}$
- addition: component wise
- ▶ multiplication: $z_1z_2 = \rho_1\rho_2 e^{i(\varphi_1+\varphi_2)}$ turning angle plus length
- multiplication in Cartesian components (a + bi)(c + di) = (ac - bd) + i(ad + cb)
- complex conjugation $(a + bi)^* = a bi$, modulus $|z| = \sqrt{z^* z}$

complex numbers make everything cool ($e^{ix} = \cos(x) + i\sin(x)$, fundamental theorem of algebra, function theory, etc.)

Introduction	Experiments	Theory	Application	References

Crash Course: Vector Spaces

- ▶ vectors $x, y \in V$, scalars $\alpha, \beta \in S$ (a field, here only \mathbb{C} and \mathbb{R})
- null vector 0
- ▶ operations: addition of vectors $x + y \in V$, additive inverse of a vector $-x \in V$, x + (-x) = 0, multiplication by a scalar $\alpha x \in V$
- $\alpha(x+y) = \alpha x + \alpha y$, $(\alpha + \beta)x = \alpha x + \beta y$
- $\alpha(\beta x) = (\alpha \beta) x$
- ► 1*x* = *x*

TL;DR: a vector space is a set of objects which can be added and which can be multiplied by scalars (real or complex numbers) in a compatible way

Introduction	Experiments	Theory	Application	References

Crash Course: L^2 Space (and Analogy to Finite Dimensional Vector Spaces)

vector space of square integrable functions (insert maths disclaimer here)

$$\|f\|^2 = \int dx \ |f(x)|^2 < \infty \qquad |oldsymbol{x}|^2 = \sum_i x_i^2 < \infty \ (ext{trivial here})$$

• the norm $||x|| := \sqrt{(x,x)}$ is induced by a scalar product (\cdot, \cdot)

$$(f,g) = \int dx f^*(x)g(x) \qquad \langle \mathbf{x}, \mathbf{y} \rangle = \sum_i x_i^* y_i$$

 \Rightarrow Hilbert space (= complete scalar-product space)

Nice surprise: almost everything works like in the finite dimensional case¹

 $^{^{1}\}mbox{mathematicians}$ will deny this, but it usually just works with the physicists careful carelessness

Introduction	Experiments	Theory	Application	References

Modelling the Wave-like Behaviour of Particles

- the Davisson-Germer experiments (1920s) show diffraction of electrons on a monocrystalline nickel surface – wave-like behaviour
- de Broglie hypothesis: particles have the wavelength $\lambda = h/p$
- idea: complex wave function ψ(r) = ρ(r)e^{iφ(r)} describing the quantum state of a single particle
 - $|\psi(\mathbf{r})|^2 = \psi(\mathbf{r})\psi^*(\mathbf{r})$ describes the probability of measuring the particle at \mathbf{r}
 - the phase is not directly measurable, but makes interference possible

$$|\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + 2\operatorname{Re}\psi_1^*(\mathbf{r})\psi_2(\mathbf{r})$$

my stance: denounce the wave-particle dualism – quantum particles are quantum neither wave nor particle

Introduction	Experiments	Theory	Application	References

States of Definite Momentum

• follow the de Broglie hypothesis $\boldsymbol{p} = h\boldsymbol{k}$ (k is the wavenumber, $k = 2\pi/\lambda$)

$$\psi_{m k}({m r}) = rac{1}{2\pi} e^{i{m k}\cdot{m r}}$$

- occupies the whole space (!)
- (mathematical catch: this state does not belong to the Hilbert space of valid normalizable states, neither do the states of definite position)
- we can write any state as superposition of $\psi_k(\mathbf{r})$ (Fourier transform)
- ▶ conclusion: by Fourier transformation² the state $\psi(\mathbf{r})$ can be written in terms of $\tilde{\psi}(\mathbf{k})$ both contain all information about the system

²this implies the uncertainty relation $\Delta x \cdot \Delta k \ge \frac{1}{2}$; the uncertainty relation is *unimportant* in the grand scheme of things

Introduction	Experiments	Theory	Application	References
Operators				

- observables in quantum mechanics are *linear operators* ("matrices") on the state space
- measuring an observable results in one of its eigenvalues
- ▶ if the system is in an eigenstate of the operator the measurement result is certain
- non-commuting operators have eigenstates that are not common
- momentum operator: $p = -i\hbar\nabla$, positions operator: x
- ▶ observation: p and x do not commute ([A, B] = AB BA is called commutator and quantifies the failure to commute, A and B commute iff [A, B] = 0)

$$px\psi = -i\hbar\psi - i\hbar x\partial_x\psi = xp\psi - i\hbar\psi =: (xp + [p, x])\psi$$
$$[p, x] = -i\hbar$$

Introduction	Experiments	Theory	Application	References
More on Operator	rs			

- linear: $O(\alpha x + \beta y) = \alpha Ox + \beta Oy$
- multiplication of operators is defined by consecutive application (OU)x = O(Ux)
- a linear operator is defined by its action on any set of vectors spanning the vector space
- inverse operator: some operators have an inverse operator O^{-1} such that $OO^{-1} = id$
- every operator has an adjoint defined by $(\varphi, A\psi) = (A^{\dagger}\varphi, \psi)$ for all ψ, φ
- there are commonly defined classes of operators

Hermitian $A = A^{\dagger}$ (in terms of the scalar product $(\psi, A\varphi) = (A\psi, \varphi)$) anti-Hermitian $A = -A^{\dagger}$ unitary $U^{\dagger} = U^{-1}$ projectors $P^2 = P$

Introduction	Experiments	Theory	Application	References

Expectation Values

the expectation value of an operator is defined as

$$\langle O \rangle = \int d^3 r \, \psi^*(\mathbf{r}) O \psi(\mathbf{r}) = (\psi, O \psi)$$

the expectation values of Hermitian operators are real

$$\langle O \rangle = (\psi, O\psi) = (O\psi, \psi) = (\psi, O\psi)^*$$

 can be shown to agree with the expectation value of the quantity represented by the operator when measuring it

Crash Course: Eigenvalue Problems

- important question: which vectors are just scaled by a linear operator: $A\psi = \lambda\psi$
- remember linear algebra this is diagonalizing matrices
- \blacktriangleright if such a ψ exists it is called eigenvector and λ is the corresponding eigenvalue
- the dimension of the space spanned by the eigenvectors can be larger than one (degeneracy), in this case we can always choose an orthonormal base in the eigenspace
- we write $\psi_{\lambda n}$ for the normalized n^{th} basis vector in the eigenspace corresponding to λ
- Hermitian operators have real eigenvalues (H = H[†] means λ = λ* for the diagonal, so for the eigenvalues in the eigenbasis)

Crash Course: Eigenvalue Problems (cont.)

spectral theorem³: all Hermitian operators have a complete (= spanning the whole vector space) system of eigenvectors, for any vector φ we have

$$arphi = \sum (\psi_{\lambda n}, arphi) \psi_{\lambda n}$$

eigenvectors φ, ψ of a Hermitian operator A for difference eigenvalues λ, κ are orthogonal, proof:
 κ^{*}(ψ, φ) = (φ, Aψ)^{*} = (ψ, Aφ) = λ(ψ, φ) ⇒ (κ^{*} − λ)(ψ, φ) = 0

³this is a lie if the dimensions are not finite, but the differences are mathematical nitpicking

Equation of Motion – Requirements

- (R1) a sharp (Gaussian) wave packet constructed from momentum states with similar momenta should follow the classical equation of motion in the limit $\hbar \rightarrow 0$
- (R2) the time evolution must conserve the total probability of finding the particle
- (R3) the equation should be first-order in time (otherwise the wave-function contains insufficient information for the time development)
- (R4) the equation should be linear to allow interference $effects^4$

from the requirements (R3) and (R4) we can write (with a linear operator H)

$$i\hbar\partial_t\psi(\mathbf{r},t)=H\psi(\mathbf{r},t)$$

⁴there was some work on non-linear quantum mechanics, but it is non-standard and not supported by experimental evidence

Introduction	Experiments	Theory	Application	References

Equation of Motion - Conservation of Probability

require conservation of probability (R2) for all states

$$0 = \partial_t \int d^3 r \, \psi^*(\mathbf{r}, t) \psi(\mathbf{r}, t) = -\frac{i}{\hbar} \int d^3 r \Big(\big(-H^* \psi^*(\mathbf{r}, t) \big) \psi(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) H \psi(\mathbf{r}, t) \Big)$$
$$= -\frac{i}{\hbar} \int d^3 r \Big(-\psi^*(\mathbf{r}, t) H^{\dagger} \psi(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) H \psi(\mathbf{r}, t) \Big)$$

- ► this implies that H = H[†] for conservation of probability (mathematical disclaimer: there are intricacies with the adjoint of operators)
- ► actually there is even *local* conservation of probability for local Hamiltonians, encoded in the continuity equation: $\partial_t \rho + \nabla \cdot \mathbf{j} = 0$

Introduction	Experiments	Theory	Application	References

The Hamiltonian

- begin with the classical Hamiltonian $H = \frac{p^2}{2m} + V(r)$
- replace p and x by their corresponding operators (sometimes called: correspondence principle – in the classical limit we must retrieve the classical equations)

• with a magnetic field we get:
$$H = \frac{(\mathbf{p} - \mathbf{A}(\mathbf{r}))^2}{2m} + V(\mathbf{r})$$

Introduction	Experiments	Theory	Application	References

Consistency with Newtonian Mechanics

- ▶ the new theory must explain *all* previous experimental evidence
- ▶ in some limiting case quantum mechanics has to reproduce Newtonian mechanics
- Ehrenfest theorem
 - in general

$$d_t\left\langle \hat{O}
ight
angle = d_t(\psi, O\psi) = rac{i}{\hbar}\left\langle [\hat{H}, \hat{O}]
ight
angle + \left\langle \partial_t O
ight
angle$$

• for position and momentum with the Schrödinger Hamiltonian $H = \frac{p^2}{2m} + V(\mathbf{r})$

$$egin{aligned} &\partial_t \left< \hat{oldsymbol{p}} \right> = - \left<
abla \hat{oldsymbol{V}} \right> \ &\partial_t \left< \hat{oldsymbol{r}} \right> = \left< \hat{oldsymbol{p}} \right> / m \end{aligned}$$

can almost be brought to the form of the Newtonian equation of motion

$$m\partial_t^2 \left< \hat{\boldsymbol{r}} \right> = -\left< \nabla \hat{\boldsymbol{V}} \right> = \left< \hat{\boldsymbol{F}} \right>$$

Introduction	Experiments	Theory	Application	References

Solving the Schrödinger Equation

• ansatz: separation of variables – $\Psi(x, t) = \Phi(t)\psi(x)$

$$i\hbar\dot{\Phi}(t)\psi(x) = \Phi(t)H\psi(x),$$

$$i\hbar\frac{\dot{\Phi}(t)}{\Phi(t)} = \frac{H\psi(x)}{\psi(x)} = \text{const} := E.$$

▶ this gives the two equations⁵

$$\dot{\Phi}(t) = -\frac{iE}{\hbar}\Phi(t), \qquad \qquad H\psi_n(x) = E_n\psi_n(x).$$

general solution of the time-dependent Schrödinger equation

$$\Psi(x,t) = \sum_{n} e^{-iE_{n}t/\hbar} (\psi_{n}, \Psi(\cdot, 0)) \psi_{n}(x).$$

⁵the second one is an eigenvalue problem

Introduction	Experiments	Theory	Application	References
Measuremen	t or How I measure	ed my cat and i	now it's dead	
► given a	a system in state ψ and	an operator A		

- the possible outcomes for A are given by its eigenvalues a_n
- ▶ the probability of measuring a_n is $\langle \psi | P_n | \psi \rangle$, where P_n projects to the eigenspace corresponding to a_n
- (idealized measurement) after having measured A the state is projected to the eigenspace of the measured value (and normalized)
- ▶ this is weird, indeterministic and apparently non-*unitary* and completely different from the nice deterministic equation for ψ (possible solution: decoherence with the environment)

TL;DR:

quantum measurement is probabilistic and inherently changes the system's state

Crash Course: Tensor Product

- there are different products of (vector) spaces
- fundamental: Cartesian product $X \times Y$, the set-of tuples of elements from X and Y
- ▶ clever: the tensor product $X \otimes Y$ over vector spaces over the same field preserves the full vector space structure⁶
 - compatible with multiplication by scalars $(\alpha x) \otimes y = x \otimes (\alpha y) =: \alpha(x \otimes y)$
 - compatible with addition in the constituent vector spaces
 - $(x+y)\otimes z = (x\otimes z) + (y\otimes z)$
 - ► for vectors that also defined a multiplication (e.g. linear operators) $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$

⁶formal construction by factoring the Cartesian product by an equivalence relation

Introduction	Experiments	Theory	Application	References
Multiple Par	ticles			

- the Hilbert space for a compound system $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ (tensor product)
- ▶ one-particle operator acting on the n^{th} particle: $\hat{O} = \mathbf{1} \otimes \cdots \otimes \hat{O}_1 \otimes \cdots \otimes \mathbf{1}$
- \blacktriangleright two-particle operator: $\hat{O}=\hat{O}_1\otimes\hat{O}_2$
- Caveat: Identical Particles
 - ▶ experimental result: there are two kinds of particles bosons and fermions
 - \blacktriangleright different behaviour as $\mathcal{T} \to 0:$ additional pressure or lowered pressure compared to the hypothetical ideal gas
 - using the formula above leads to paradoxical results
 - identical fermions have anti-symmetrized, identical bosons have symmetrized wave-functions

•
$$\mathcal{H} = H_1^{\otimes nS_{\pm}}$$

Summary: The Axioms of Quantum Mechanics

- (A1) All information about a quantum system is carried in a L^2 function $\psi: R \to \mathbb{C}$.
- (A2) Each observable is given by a Hermitian operator A.
- (A3) The possible measurement values are given by the eigenvalues von A.
- (A4) The eigenvectors must be orthonormalized.
- (A5) The probability for of measuring a is given by (where ν is the degeneracy index).

$$P(a,t) = \sum_{\nu} \left| \int dx \, \psi^*_{a\nu}(x) \psi(x,t) \right|^2.$$

(A6) The equation of motion of ψ is the Schrödinger equations

$$i\hbar\partial_t\psi=H\psi$$

(A7) Pauli principle (where the two signs are for bosons resp. fermions):

$$\psi(1,2,\ldots)=\pm\psi(2,1,\ldots)$$

 Introduction
 Experiments
 Theory
 Application
 References

 How not to Be Afraid of the Dirac (or Bra-Ket-) Notation
 Introduction
 Introduction
 Introduction

- ► the wave-function \u03c6(\u03c8) can be thought of as a the position-basis components of an abstract wave-function vector |\u03c6\u03c6 (read: ket psi)
- $\langle \psi | \cdots = \int d^3 r \, \psi^*(\mathbf{r}) \cdots$ (read: bra psi) is the adjoint linear functional of $|\psi\rangle$ so that $\langle \psi | \varphi \rangle = \int d^3 r \, \psi^*(\mathbf{r}) \varphi(\mathbf{r})$ is the L^2 inner product⁷

$$\blacktriangleright |\psi\rangle = \int d^3 r \, \psi(\mathbf{r}) |\mathbf{r}\rangle \text{ just like } \mathbf{a} = a_x \mathbf{e}_x + a_y \mathbf{e}_y + a_z \mathbf{e}_z$$

- now we can develop the coefficients in different bases
- especially common (since it makes the time evolution easy): the energy eigenstates $|\psi\rangle = \sum_{n} c_{n} |n\rangle$, $H |n\rangle = E_{n} |n\rangle$
- matrix elements of operators:

$$O \left|\psi\right\rangle = \sum_{nm} \left|n\right\rangle \left\langle n\right|O\left|m\right\rangle \left\langle m\right|\psi\right\rangle = \left|n\right\rangle O_{nm}\psi_{m}$$

⁷mathematical pedants define states to be continuous linear functionals and thereby solve the position eigenstate problem.

Figure: Setup

Figure: Setup

Figure: Setup

Figure: Setup

Introduction	Experiments	Theory	Application	References

Harmonic Oscillator

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \hbar\omega\left(a^{\dagger}a + \frac{1}{2}\right), \quad a = \sqrt{\frac{\omega m}{2\hbar}}x + \frac{i\rho}{\sqrt{2\hbar\omega m}}, \quad [a, a^{\dagger}] = 1$$

- if there is a state such that $a|0\rangle = 0$ it will be an eigenstate of H with the energy $\frac{1}{2}\hbar\omega$
- ▶ induction: assume a state $|n\rangle$ with $a^{\dagger}a|n\rangle = n|n\rangle$, then we have $a^{\dagger}aa^{\dagger}|0\rangle = a^{\dagger}(a^{\dagger}a+1)|n\rangle = (n+1)a^{\dagger}|n\rangle := (n+1)\mathcal{N}|n+1\rangle$
- ▶ normalization: $\langle n | aa^{\dagger} | n \rangle = |n+1\rangle \mathcal{N}^* \mathcal{N} | n+1 \rangle$, so $\mathcal{N} = \sqrt{n}$
- ► therefore, there is an eigenstate for each natural number *n* with $a^{\dagger}a |n\rangle = n |n\rangle$ and energies $E_n = \hbar \omega \left(n + \frac{1}{2}\right)$

Introduction	Experiments	Theory	Application	References

Harmonic Oscillator (cont.)

• the eigenvalue equation $a|0\rangle = 0$ in the position representation $\psi(x) = \langle x|0\rangle$ reads

$$\partial_x \psi(x) = -\frac{\omega m}{\hbar} x \psi(x)$$

▶ we guess a solution

$$\psi(\mathbf{x}) = \mathcal{N} \exp\left(-rac{\omega m \mathbf{x}^2}{2\hbar}
ight)$$

- \blacktriangleright since the differential equation is linear and homogeneous, this must be the solution
- normalization $|\mathcal{N}|^2 = \sqrt{\frac{\hbar}{\pi\omega m}}$ (from $\int dx \, e^{-x^2} = \sqrt{\pi}$ and substitution)
- ▶ all eigenfunctions of $a^{\dagger}a$ (and therefore *H*) can now be obtained by repeatedly applying a^{\dagger}

Introduction	Experiments	Theory	Application	References

Tunnelling

Figure: Scattering Eigenstate of a Tunnelling Problem

- in quantum mechanics particles can move through barriers of higher energy than their own
- the wave function decays exponentially in barriers but does not vanish immediately
- Myth: tunnelling makes a particle travel instantaneously from a to b
- Busted: states of particles are extended, only when measuring its position does a particle get a definite position (also: nothing disallows faster than light movement in non-relativistic quantum mechanics, the Schrödinger equation is not Lorentz invariant but Galilei invariant)

Introduction	Experiments	Theory	Application	References
Entanglement				

- consider a two-particle system, measurement of one of the particles projects the total state to the respective subspace
 - now we have a state with two particles

$$\left| \Phi^{+}
ight
angle = rac{1}{\sqrt{2}} ig(\left| 0
ight
angle \left| 0
ight
angle + \left| 1
ight
angle \left| 1
ight
angle ig)$$

- measure the first particle, depending on the result of this measurement, the second particle will be *in the same state*
- this means that measurements of the two single particles in this state will be perfectly correlated!
- Einstein called this "spooky action at distance"

Introduction	Experiments	Theory	Application	References

Entanglement – Remarks

- there are no hidden variables the result is not intrinsically determined before measurement
- utterly weird but experimentally proven with so called Bell tests
- Myth: Entanglement allows to transfer information between two sites instantaneously
- Busted: no communication theorem: you can't exchange information faster than light via entangled particle pairs (but you can generate correlated noise)

Introduction	Experiments	Theory	Application	References

Quantum Information

- \blacktriangleright a qubit is a quantum system with two states $|0\rangle$ and $|1\rangle$
- quantum computers
 - really bad for most computing tasks binary-on-silicon folks don't fear for your job
 - can compute some things faster than a classical computer (e.g. factoring primes and similar problems – this would nuke our public-key crypto)
 - use linear superposition to construct a weird kind of parallelism using superpositions (we can compute something simultaneously for the 2^N basis states)
- quantum cryptography
 - solves the same problem as DH exchange
 - \blacktriangleright we can generate a shared key and can check that there was no eavesdropper
 - we can't detect a man in the middle without having a shared secret or PKI (quantum particles don't know who's on the other side)
 - essentially useless as there are classical quantum computer safe key-exchanges
 - commercial implementations: susceptible to side channel attacks

Introduction	Experiments	Theory	Application	References
Defense				

References

- L. D. Landau, E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Band III, Quantenmechanik, (Verlag Harri Deutsch, ed. 9, 1992).
- H. Schulz, *Physik mit Bleistift*, (Verlag Harri Deutsch, ed. 6, 2006).
- F. Schwabl, Quantenmechanik, (Springer, ed. 7, 2007).