# Quantum Mechanics <br> A Gentle Introduction 

Sebastian Riese

27.12.2018

Introduction

## Experiments

Theory

## Application

## Concept of This Talk

- key experiments will be reviewed
- not historical: make the modern theory plausible using historical experiments, leave the history be history, modify the experiments to make a point
- quantum mechanics is quite abstract and not "anschaulich" so we will need mathematics (linear algebra, differential equations)
- we'll try to find a new, post-classical, "Anschaulichkeit" however in the end the adage "shut up and calculate" holds
- we'll include maths crash courses where we need them (mathematicians will suffer, sorry guys and gals)


## How Scientific Theories Work

- a scientific theory is a net of interdependent propositions
- when extending the theory different propositions are proposed as hypotheses
- the hypotheses that stand the experimental test are added to the theory
- new experimental results are either consistent or inconsistent with the propositions of the theory
- if they are inconsistent, some of the propositions have been falsified, and the theory must be amended in the minimal (Occam's razor) way that makes it consistent with all experimental results
- new theoretical ideas must explain why the old ones worked


## How It All Began

- time frame: late $19^{\text {th }} /$ early $20^{\text {th }}$ century
- known fundamental theories of physics:
- classical mechanics ( $\boldsymbol{F}=\mathbf{m a}$ )
- Newtonian gravitation ( $\left.\boldsymbol{F}=G m_{1} m_{2} \frac{r_{1}-r_{2}}{\left|r_{1}-r_{2}\right|^{3}}\right)$
- Maxwellian electrodynamics ( $\partial_{\mu} F^{\mu \nu}=4 \pi j^{\nu}$, Lorentz force)
- (Maxwell-Boltzmann classical statistical physics)
- several experimental results could not be explained by the classical physical theories under reasonable assumptions, e.g.
- photoelectric effect (Hertz and Hallwachs 1887)
- discrete spectral lines of atoms (Fraunhofer 1815, Bunsen and Kirchhoff 1858)
- radioactive rays: single spots on photographic plates
- stability of atoms composed of compact, positively charged nuclei (Rutherford 1909) and negatively charged cathode ray particles (Thomson 1897)


## Cathode Rays



Figure: Schematic of an
Electron Gun

- to-do list

1. have a heated cathode, a simple electrostatic accelerator and a pinhole (an "electron gun")
2. put it in an evacuated tube (if there's some well chosen gas left it'll glow nicely)
3. play around (tips: magnetic fields, electric fields, fluorescent screens, etc.)

- results: there are negatively charged particles that can be separated from metal electrodes, hydrogen gas, etc.
- atoms are neutral - conclusion: there is a positively charged component as well


## Rutherford(-Marsden-Geiger) Experiment



Figure: Schematic of the Rutherford
Experiment

- measure the deflection angles of $\alpha$ particles shot perpendicularly through a thin gold foil
- weird result: some of the $\alpha$ are deflected strongly
- conclusion from deflection calculations for different charge/mass distributions: atoms must contain a small and massive concentration of mass and charge (the nucleus)


## Atoms Are Stable!?

- accelerated charges always radiate classically (Maxwell equations)
- to form stable atoms the electrons have to be bound to the nuclei in some orbits implying accelerated motion
$\Rightarrow$ classical electrodynamics and the above $=$ WAT
- so the simple experimental fact that there are stable atoms nukes classical physics (plus reasonable assumptions)


## Photoelectric Effect



Figure: Schematic of a Phototube

- a current flows when light falls on a metal surface in a vacuum (phototube)
- when biasing the electrodes with a voltage $U_{B}$ no current flows above some threshold voltage $U_{T}$
- the threshold voltage is proportional to the wavelength $\lambda$ of the light
- for different metals there are different threshold wavelengths, below which no current flows for $U_{B}=0$


## Spectral Lines of Atoms - Experimental Setup


screen

Figure: Schematic of a Discharge Tube and Spectrograph

- discrete emission lines - together with the photon hypothesis: discrete energies!
- characteristic spectra for each atom species
- absorption lines complementary to the emission lines


## Davisson-Germer Experiment



Figure: Schematic: Davisson-Germer Experiment

- the electrons show a diffraction pattern (that can be seen by moving the Faraday cup around)
- we can determing the wavelength of the matter wave from the diffraction pattern (and the lattice parameters of the crystal)
- this confirms the de Broglie relation


## Radioactivity and Experiments with Single Particles

- radioactivity is random - you can't predict when the next decay will happen - this hints at the intrinsic randomness of subatomic physics
- we can do interference experiments with single particles, to do so we need a set of sensitive detectors
- at most one of a set of such sensors detects the electron or photon
- while the particle is extended in transit, it will be forced to a sharp measurement result on detection!
- if we do a double slit interference experiment and detect which slit the particle went through, then the interference pattern vanishes!
- if we do the above and then discard the which-way-information in a coherent manner there will again be interference (quantum eraser)


## Crash Course: Complex Numbers

- $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}, i^{2}=-1$, usual rules of calculation
- can be thought of as phasors in the complex plane


Figure: Complex Plane

- polar representation: $z=\rho(\cos (\varphi)+i \sin (\varphi))=\rho e^{i \varphi}$
- addition: component wise
- multiplication: $z_{1} z_{2}=\rho_{1} \rho_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)}$ - turning angle plus length
- multiplication in Cartesian components

$$
(a+b i)(c+d i)=(a c-b d)+i(a d+c b)
$$

- complex conjugation $(a+b i)^{*}=a-b i$, modulus

$$
|z|=\sqrt{z^{*} z}
$$

complex numbers make everything cool $\left(e^{i x}=\cos (x)+i \sin (x)\right.$, fundamental theorem of algebra, function theory, etc.)

## Crash Course: Vector Spaces

- vectors $x, y \in V$, scalars $\alpha, \beta \in S$ (a field, here only $\mathbb{C}$ and $\mathbb{R}$ )
- null vector $\mathbf{0}$
- operations: addition of vectors $x+y \in V$, additive inverse of a vector $-x \in V$, $x+(-x)=0$, multiplication by a scalar $\alpha x \in V$
- $\alpha(x+y)=\alpha x+\alpha y,(\alpha+\beta) x=\alpha x+\beta y$
- $\alpha(\beta x)=(\alpha \beta) x$
- $1 x=x$

TL;DR: a vector space is a set of objects which can be added and which can be multiplied by scalars (real or complex numbers) in a compatible way

## Crash Course: L² Space (and Analogy to Finite Dimensional Vector Spaces)

- vector space of square integrable functions (insert maths disclaimer here)

$$
\|f\|^{2}=\int d x|f(x)|^{2}<\infty \quad|x|^{2}=\sum_{i} x_{i}^{2}<\infty(\text { trivial here })
$$

- the norm $\|x\|:=\sqrt{(x, x)}$ is induced by a scalar product $(\cdot, \cdot)$

$$
(f, g)=\int d x f^{*}(x) g(x) \quad\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i} x_{i}^{*} y_{i}
$$

$\Rightarrow$ Hilbert space (= complete scalar-product space)
Nice surprise: almost everything works like in the finite dimensional case ${ }^{1}$

[^0]
## Modelling the Wave-like Behaviour of Particles

- the Davisson-Germer experiments (1920s) show diffraction of electrons on a monocrystalline nickel surface - wave-like behaviour
- de Broglie hypothesis: particles have the wavelength $\lambda=h / p$
- idea: complex wave function $\psi(\boldsymbol{r})=\rho(\boldsymbol{r}) e^{i \varphi(\boldsymbol{r})}$ describing the quantum state of $a$ single particle
- $|\psi(\boldsymbol{r})|^{2}=\psi(\boldsymbol{r}) \psi^{*}(\boldsymbol{r})$ describes the probability of measuring the particle at $\boldsymbol{r}$
- the phase is not directly measurable, but makes interference possible

$$
\left|\psi_{1}+\psi_{2}\right|^{2}=\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+2 \operatorname{Re} \psi_{1}^{*}(\boldsymbol{r}) \psi_{2}(\boldsymbol{r})
$$

- my stance: denounce the wave-particle dualism - quantum particles are quantum neither wave nor particle


## States of Definite Momentum

- follow the de Broglie hypothesis $\boldsymbol{p}=h \boldsymbol{k}$ ( $k$ is the wavenumber, $k=2 \pi / \lambda$ )

$$
\psi_{\boldsymbol{k}}(\boldsymbol{r})=\frac{1}{2 \pi} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}
$$

- occupies the whole space (!)
- (mathematical catch: this state does not belong to the Hilbert space of valid normalizable states, neither do the states of definite position)
- we can write any state as superposition of $\psi_{k}(\boldsymbol{r})$ (Fourier transform)
- conclusion: by Fourier transformation ${ }^{2}$ the state $\psi(\boldsymbol{r})$ can be written in terms of $\tilde{\psi}(\boldsymbol{k})$ - both contain all information about the system

[^1]
## Operators

- observables in quantum mechanics are linear operators ("matrices") on the state space
- measuring an observable results in one of its eigenvalues
- if the system is in an eigenstate of the operator the measurement result is certain
- non-commuting operators have eigenstates that are not common
- momentum operator: $p=-i \hbar \nabla$, positions operator: $x$
- observation: $p$ and $x$ do not commute $([A, B]=A B-B A$ is called commutator and quantifies the failure to commute, $A$ and $B$ commute iff $[A, B]=0$ )

$$
\begin{aligned}
p x \psi=-i \hbar \psi-i \hbar x \partial_{x} \psi & =x p \psi-i \hbar \psi=:(x p+[p, x]) \psi \\
{[p, x] } & =-i \hbar
\end{aligned}
$$

## More on Operators

- linear: $O(\alpha x+\beta y)=\alpha O x+\beta O y$
- multiplication of operators is defined by consecutive application $(O U) x=O(U x)$
- a linear operator is defined by its action on any set of vectors spanning the vector space
- inverse operator: some operators have an inverse operator $O^{-1}$ such that $O O^{-1}=\mathrm{id}$
- every operator has an adjoint defined by $(\varphi, A \psi)=\left(A^{\dagger} \varphi, \psi\right)$ for all $\psi, \varphi$
- there are commonly defined classes of operators

Hermitian $A=A^{\dagger}$ (in terms of the scalar product $(\psi, A \varphi)=(A \psi, \varphi))$
anti-Hermitian $A=-A^{\dagger}$

$$
\begin{aligned}
\text { unitary } U^{\dagger} & =U^{-1} \\
\text { projectors } P^{2} & =P
\end{aligned}
$$

## Expectation Values

- the expectation value of an operator is defined as

$$
\langle O\rangle=\int d^{3} r \psi^{*}(\boldsymbol{r}) O \psi(\boldsymbol{r})=(\psi, O \psi)
$$

- the expectation values of Hermitian operators are real

$$
\langle O\rangle=(\psi, O \psi)=(O \psi, \psi)=(\psi, O \psi)^{*}
$$

- can be shown to agree with the expectation value of the quantity represented by the operator when measuring it


## Crash Course: Eigenvalue Problems

- important question: which vectors are just scaled by a linear operator: $A \psi=\lambda \psi$
- remember linear algebra - this is diagonalizing matrices
- if such a $\psi$ exists it is called eigenvector and $\lambda$ is the corresponding eigenvalue
- the dimension of the space spanned by the eigenvectors can be larger than one (degeneracy), in this case we can always choose an orthonormal base in the eigenspace
- we write $\psi_{\lambda n}$ for the normalized $n^{\text {th }}$ basis vector in the eigenspace corresponding to $\lambda$
- Hermitian operators have real eigenvalues $\left(H=H^{\dagger}\right.$ means $\lambda=\lambda^{*}$ for the diagonal, so for the eigenvalues in the eigenbasis)


## Crash Course: Eigenvalue Problems (cont.)

- spectral theorem ${ }^{3}$ : all Hermitian operators have a complete (=spanning the whole vector space) system of eigenvectors, for any vector $\varphi$ we have

$$
\varphi=\sum\left(\psi_{\lambda n}, \varphi\right) \psi_{\lambda n}
$$

- eigenvectors $\varphi, \psi$ of a Hermitian operator $A$ for difference eigenvalues $\lambda, \kappa$ are orthogonal, proof:
$\kappa^{*}(\psi, \varphi)=(\varphi, A \psi)^{*}=(\psi, A \varphi)=\lambda(\psi, \varphi) \Rightarrow\left(\kappa^{*}-\lambda\right)(\psi, \varphi)=0$
${ }^{3}$ this is a lie if the dimensions are not finite, but the differences are mathematical nitpicking


## Equation of Motion - Requirements

(R1) a sharp (Gaussian) wave packet constructed from momentum states with similar momenta should follow the classical equation of motion in the limit $\hbar \rightarrow 0$
(R2) the time evolution must conserve the total probability of finding the particle (R3) the equation should be first-order in time (otherwise the wave-function contains insufficient information for the time development)
(R4) the equation should be linear to allow interference effects ${ }^{4}$
from the requirements $(R 3)$ and $(R 4)$ we can write (with a linear operator $H$ )

$$
i \hbar \partial_{t} \psi(\boldsymbol{r}, t)=H \psi(\boldsymbol{r}, t)
$$

[^2]
## Equation of Motion - Conservation of Probability

- require conservation of probability ( $R 2$ ) for all states

$$
\begin{aligned}
0 & =\partial_{t} \int d^{3} r \psi^{*}(\boldsymbol{r}, t) \psi(\boldsymbol{r}, t)=-\frac{i}{\hbar} \int d^{3} r\left(\left(-H^{*} \psi^{*}(\boldsymbol{r}, t)\right) \psi(\boldsymbol{r}, t)+\psi^{*}(\boldsymbol{r}, t) H \psi(\boldsymbol{r}, t)\right) \\
& =-\frac{i}{\hbar} \int d^{3} r\left(-\psi^{*}(\boldsymbol{r}, t) H^{\dagger} \psi(\boldsymbol{r}, t)+\psi^{*}(\boldsymbol{r}, t) H \psi(\boldsymbol{r}, t)\right)
\end{aligned}
$$

- this implies that $H=H^{\dagger}$ for conservation of probability (mathematical disclaimer: there are intricacies with the adjoint of operators)
- actually there is even local conservation of probability for local Hamiltonians, encoded in the continuity equation: $\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0$


## The Hamiltonian

- begin with the classical Hamiltonian $H=\frac{\boldsymbol{p}^{2}}{2 m}+V(\boldsymbol{r})$
- replace $p$ and $x$ by their corresponding operators (sometimes called: correspondence principle - in the classical limit we must retrieve the classical equations)
- with a magnetic field we get: $H=\frac{(\boldsymbol{p}-\boldsymbol{A}(\boldsymbol{r}))^{2}}{2 m}+V(\boldsymbol{r})$


## Consistency with Newtonian Mechanics

- the new theory must explain all previous experimental evidence
- in some limiting case quantum mechanics has to reproduce Newtonian mechanics
- Ehrenfest theorem
- in general

$$
d_{t}\langle\hat{O}\rangle=d_{t}(\psi, O \psi)=\frac{i}{\hbar}\langle[\hat{H}, \hat{O}]\rangle+\left\langle\partial_{t} O\right\rangle
$$

- for position and momentum with the Schrödinger Hamiltonian $H=\frac{p^{2}}{2 m}+V(\boldsymbol{r})$

$$
\begin{aligned}
\partial_{t}\langle\hat{\boldsymbol{p}}\rangle & =-\langle\nabla \hat{V}\rangle \\
\partial_{t}\langle\hat{\boldsymbol{r}}\rangle & =\langle\hat{\boldsymbol{p}}\rangle / m
\end{aligned}
$$

- can almost be brought to the form of the Newtonian equation of motion

$$
m \partial_{t}^{2}\langle\hat{\boldsymbol{r}}\rangle=-\langle\nabla \hat{V}\rangle=\langle\hat{F}\rangle
$$

## Solving the Schrödinger Equation

- ansatz: separation of variables $-\Psi(x, t)=\Phi(t) \psi(x)$

$$
\begin{aligned}
i \hbar \dot{\Phi}(t) \psi(x) & =\Phi(t) H \psi(x) \\
i \hbar \frac{\dot{\Phi}(t)}{\Phi(t)} & =\frac{H \psi(x)}{\psi(x)}=\mathrm{const}:=E
\end{aligned}
$$

- this gives the two equations ${ }^{5}$

$$
\dot{\Phi}(t)=-\frac{i E}{\hbar} \Phi(t), \quad H \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

- general solution of the time-dependent Schrödinger equation

$$
\Psi(x, t)=\sum_{n} e^{-i E_{n} t / \hbar}\left(\psi_{n}, \Psi(\cdot, 0)\right) \psi_{n}(x)
$$

[^3]
## Measurement or How I measured my cat and now it's dead

- given a system in state $\psi$ and an operator $A$
- the possible outcomes for $A$ are given by its eigenvalues $a_{n}$
- the probability of measuring $a_{n}$ is $\langle\psi| P_{n}|\psi\rangle$, where $P_{n}$ projects to the eigenspace corresponding to $a_{n}$
- (idealized measurement) after having measured $A$ the state is projected to the eigenspace of the measured value (and normalized)
- this is weird, indeterministic and apparently non-unitary and completely different from the nice deterministic equation for $\psi$ (possible solution: decoherence with the environment)


## TL;DR:

quantum measurement is probabilistic and inherently changes the system's state

## Crash Course: Tensor Product

- there are different products of (vector) spaces
- fundamental: Cartesian product $X \times Y$, the set-of tuples of elements from $X$ and Y
- clever: the tensor product $X \otimes Y$ over vector spaces over the same field preserves the full vector space structure ${ }^{6}$
- compatible with multiplication by scalars $(\alpha x) \otimes y=x \otimes(\alpha y)=: \alpha(x \otimes y)$
- compatible with addition in the constituent vector spaces $(x+y) \otimes z=(x \otimes z)+(y \otimes z)$
- for vectors that also defined a multiplication (e.g. linear operators) $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$

[^4]
## Multiple Particles

- the Hilbert space for a compound system $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{n}$ (tensor product)
- one-particle operator acting on the $n^{\text {th }}$ particle: $\hat{O}=1 \otimes \cdots \otimes \hat{O}_{1} \otimes \cdots \otimes 1$
- two-particle operator: $\hat{O}=\hat{O}_{1} \otimes \hat{O}_{2}$
- Caveat: Identical Particles
- experimental result: there are two kinds of particles - bosons and fermions
- different behaviour as $T \rightarrow 0$ : additional pressure or lowered pressure compared to the hypothetical ideal gas
- using the formula above leads to paradoxical results
- identical fermions have anti-symmetrized, identical bosons have symmetrized wave-functions
- $\mathcal{H}=H_{1}^{\otimes n S_{ \pm}}$


## Summary: The Axioms of Quantum Mechanics

(A1) All information about a quantum system is carried in a $L^{2}$ function $\psi: R \rightarrow \mathbb{C}$.
(A2) Each observable is given by a Hermitian operator $A$.
(A3) The possible measurement values are given by the eigenvalues von $A$.
(A4) The eigenvectors must be orthonormalized.
(A5) The probability for of measuring $a$ is given by (where $\nu$ is the degeneracy index).

$$
P(a, t)=\sum_{\nu}\left|\int d x \psi_{a \nu}^{*}(x) \psi(x, t)\right|^{2} .
$$

(A6) The equation of motion of $\psi$ is the Schrödinger equations

$$
i \hbar \partial_{t} \psi=H \psi
$$

(A7) Pauli principle (where the two signs are for bosons resp. fermions):

$$
\psi(1,2, \ldots)= \pm \psi(2,1, \ldots)
$$

## How not to Be Afraid of the Dirac (or Bra-Ket-) Notation

- the wave-function $\psi(\boldsymbol{r})$ can be thought of as a the position-basis components of an abstract wave-function vector $|\psi\rangle$ (read: ket psi)
- $\langle\psi| \cdots=\int d^{3} r \psi^{*}(\boldsymbol{r}) \cdots$ (read: bra psi ) is the adjoint linear functional of $|\psi\rangle$ so that $\langle\psi \mid \varphi\rangle=\int d^{3} r \psi^{*}(\boldsymbol{r}) \varphi(\boldsymbol{r})$ is the $L^{2}$ inner product ${ }^{7}$
- $|\psi\rangle=\int d^{3} r \psi(\boldsymbol{r})|\boldsymbol{r}\rangle$ just like $\boldsymbol{a}=a_{x} \boldsymbol{e}_{x}+a_{y} \boldsymbol{e}_{y}+a_{z} \boldsymbol{e}_{z}$
- now we can develop the coefficients in different bases
- especially common (since it makes the time evolution easy): the energy eigenstates

$$
|\psi\rangle=\sum_{n} c_{n}|n\rangle, H|n\rangle=E_{n}|n\rangle
$$

- matrix elements of operators:

$$
O|\psi\rangle=\sum_{n m}|n\rangle\langle n| O|m\rangle\langle m \mid \psi\rangle=|n\rangle O_{n m} \psi_{m}
$$

[^5]
## A Quantum Eraser at Home



Figure: Setup
disclaimer: this can be explained classically as well, but the photon-wise quantum interpretation is totally valid (and the classical result can be explained in terms of it)

## A Quantum Eraser at Home


polarization
filter
vertical

## Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum interpretation is totally valid (and the classical result can be explained in terms of it)

## A Quantum Eraser at Home



Figure: Setup
disclaimer: this can be explained classically as well, but the photon-wise quantum interpretation is totally valid (and the classical result can be explained in terms of it)

## A Quantum Eraser at Home


polarization filter diagonal

Figure: Setup
disclaimer: this can be explained classically as well, but the photon-wise quantum interpretation is totally valid (and the classical result can be explained in terms of it)

## Harmonic Oscillator

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right), \quad a=\sqrt{\frac{\omega m}{2 \hbar}} x+\frac{i p}{\sqrt{2 \hbar \omega m}}, \quad\left[a, a^{\dagger}\right]=1
$$

- if there is a state such that $a|0\rangle=0$ it will be an eigenstate of $H$ with the energy $\frac{1}{2} \hbar \omega$
- induction: assume a state $|n\rangle$ with $a^{\dagger} a|n\rangle=n|n\rangle$, then we have $a^{\dagger} a a^{\dagger}|0\rangle=a^{\dagger}\left(a^{\dagger} a+1\right)|n\rangle=(n+1) a^{\dagger}|n\rangle:=(n+1) \mathcal{N}|n+1\rangle$
- normalization: $\langle n| a a^{\dagger}|n\rangle=|n+1\rangle \mathcal{N}^{*} \mathcal{N}|n+1\rangle$, so $\mathcal{N}=\sqrt{n}$
- therefore, there is an eigenstate for each natural number $n$ with $a^{\dagger} a|n\rangle=n|n\rangle$ and energies $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$


## Harmonic Oscillator (cont.)

- the eigenvalue equation $a|0\rangle=0$ in the position representation $\psi(x)=\langle x \mid 0\rangle$ reads

$$
\partial_{x} \psi(x)=-\frac{\omega m}{\hbar} x \psi(x)
$$

- we guess a solution

$$
\psi(x)=\mathcal{N} \exp \left(-\frac{\omega m x^{2}}{2 \hbar}\right)
$$

- since the differential equation is linear and homogeneous, this must be the solution
- normalization $|\mathcal{N}|^{2}=\sqrt{\frac{\hbar}{\pi \omega m}}$ (from $\int d x e^{-x^{2}}=\sqrt{\pi}$ and substitution)
- all eigenfunctions of $a^{\dagger} a$ (and therefore $H$ ) can now be obtained by repeatedly applying $a^{\dagger}$


## Tunnelling



Figure: Scattering Eigenstate of a Tunnelling Problem

- in quantum mechanics particles can move through barriers of higher energy than their own
- the wave function decays exponentially in barriers but does not vanish immediately
- Myth: tunnelling makes a particle travel instantaneously from $a$ to $b$
- Busted: states of particles are extended, only when measuring its position does a particle get a definite position (also: nothing disallows faster than light movement in non-relativistic quantum mechanics, the Schrödinger equation is not Lorentz invariant but Galilei invariant)


## Entanglement

- consider a two-particle system, measurement of one of the particles projects the total state to the respective subspace
- now we have a state with two particles

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)
$$

- measure the first particle, depending on the result of this measurement, the second particle will be in the same state
- this means that measurements of the two single particles in this state will be perfectly correlated!
- Einstein called this "spooky action at distance"


## Entanglement - Remarks

- there are no hidden variables - the result is not intrinsically determined before measurement
- utterly weird but experimentally proven with so called Bell tests
- Myth: Entanglement allows to transfer information between two sites instantaneously
- Busted: no communication theorem: you can't exchange information faster than light via entangled particle pairs (but you can generate correlated noise)


## Quantum Information

- a qubit is a quantum system with two states $|0\rangle$ and $|1\rangle$
- quantum computers
- really bad for most computing tasks - binary-on-silicon folks don't fear for your job
- can compute some things faster than a classical computer (e.g. factoring primes and similar problems - this would nuke our public-key crypto)
- use linear superposition to construct a weird kind of parallelism using superpositions (we can compute something simultaneously for the $2^{N}$ basis states)
- quantum cryptography
- solves the same problem as DH exchange
- we can generate a shared key and can check that there was no eavesdropper
- we can't detect a man in the middle without having a shared secret or PKI (quantum particles don't know who's on the other side)
- essentially useless as there are classical quantum computer safe key-exchanges
- commercial implementations: susceptible to side channel attacks


## References

R L. D. Landau, E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Band III, Quantenmechanik, (Verlag Harri Deutsch, ed. 9, 1992).
EH. Schulz, Physik mit Bleistift, (Verlag Harri Deutsch, ed. 6, 2006).
圊 F. Schwabl, Quantenmechanik, (Springer, ed. 7, 2007).


[^0]:    ${ }^{1}$ mathematicians will deny this, but it usually just works with the physicists careful carelessness

[^1]:    ${ }^{2}$ this implies the uncertainty relation $\Delta x \cdot \Delta k \geq \frac{1}{2}$; the uncertainty relation is unimportant in the grand scheme of things

[^2]:    ${ }^{4}$ there was some work on non-linear quantum mechanics, but it is non-standard and not supported by experimental evidence

[^3]:    ${ }^{5}$ the second one is an eigenvalue problem

[^4]:    ${ }^{6}$ formal construction by factoring the Cartesian product by an equivalence relation

[^5]:    ${ }^{7}$ mathematical pedants define states to be continuous linear functionals and thereby solve the position eigenstate problem.

