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Provable Security

• Thank you for waking up that early

• It’s a great honor for us to give this talk, espessialy in the slot directly after djb and Tanja
Lange

• Two points before, which might not get clear during this talk:
– we like provable security
– Oded Goldreich is a great cryptographer, who did amazing things for the field of

cryptography
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Provable Security

•

• Organisation of this talk:
1. Motivation: Why do we want security proven
2. Examples: What could get wrong and how to proof security of protocols
3. 2 Examples Why modern crypto proofs are kind of weird
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Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard.

Lars Knudsen:
If it’s provably secure, it probably isn’t.
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• Just because you don’t see the flaw in your scheme, it does not mean it’s not there

• strict mathematical proofs can handle this
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Motivation: Meaning of security

• most of you will know this example

• ECB (electronic codebook mode): mode for applying encryption defined on blocks of finite
lenth to messages of arbitrary length

• each block (read: byte) is encypted in a secure way

• but deterministic

• Simply encypting each block is not a useful definition of security
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Motivation: Security depends on the context

• decryption of CBC (cipher block chaining) mode

• cipher is XORed on the output of the decryption

• deeper in the talk on TLS 1.3 by hanno
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Motivation: Use primitives right

• CBC-Mode

• needs messages of specific lengths, i.e. a multiple of block size

• use padding

• excurse: Oracle
– some magical instance
– that takes input and
– generates a specific Output

• Use Padding Oracle

• allows to break byte by byte

• Learn: Use your crypto right
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Why unconditional proofs are implausible

• What is P vs. NP? Millenium Problem

• Asume that you have build up your protocol, so let’s start to prove

• breaking a cipher should be hard, which mean it should be in NP \ P

• PAUSE

• recognising encryptions should be hard.

• if we proof this is difficulty, we would have a Problem in NP \ P

• so NP 6= P
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How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”
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≈ Given the ciphertext (and the public key), it’s impractical to learn anything about the
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≈ Given an encryption-oracle/public key, no attacker can distinguish the encryptions of
two plaintexts (of equal length) of his choice.
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Out-of-model-attacks

• We already mentioned Bleichenbacher
• There will be more. . .
• Side-channel-attacks
• Composition might give evil environments
• Often the hardest part in all of cryptography
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Proofs by reduction

• if we can give a translator, these assumptions contradict

• so either the assumption is wrong, or there is no adversary.
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ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx ]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r ]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy )
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Does not scale
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(Usually) more intuitive meaning
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Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this



Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this



Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this



Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Hash-Functions

Hash-Functions

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Hash-Functions

Used Hash-Function: SHA3-256
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Random-Oracle-Model

• Hash functions are difficult to handle in proofs

• especially in an abstract way

How a real Random oracle would look like:

• no one ever found a box with a dwarf

• those boxes would be difficult to handle

• ⇒ better use a hash function everyone can evaluate

• Problems:
1. would be difficult to handle
2. is not a valid abstraction
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Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext
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1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz
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What to do now?

• authors came to harsh statements

It should be clear that the Random Oracle Methodology is not sound; that is, the mere
fact that a scheme is secure in the ROM cannot taken as evidence (or indication) to
the security.
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The Serpent of the Random Oracle Model

Indeed, what happened with the ROM reminds us of the biblical story of the Bronze
Serpent. [. . . ] This story illustrates the process by which a good thing may become a
fetish, and what to do in such a case.

• spoiler alert: the snake had to be destroyed.
– looking at the serpent healed snakebites; Hezekia destroyed it

• if you need to cite the bible as a cryptographer, you point may stand on feet of clay.
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Koblitz, Menezes:
if one of the world’s leading specialists [. . . ] puts forth his best effort to
undermine the validity [. . . ] of the random oracle assumption, and if the flawed
construction is the best he can do, then perhaps there is more reason than ever
to have confidence in the random oracle model.
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Avoiding the Random Oracle Model

• For Gennaro-Halevi-Rabin Signatures it was shown that they have a strange Property:
Duplicate-signature-key-selection-attacks.

• given a message and a signature, one can Calculate another key pair, such that the
signature is valid for the same message under the new key

• Boneh-Boyen: Avoiding ROM made signatures twice as long and much more difficult to
implement

• is this worth the effort?

Next:

• you might have noticed that we move more and more foreward into the beauty of
proving-brain-fuck. For the next step I need to introduce another nice cryptographic tool
called commitment schemes



Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
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c := gm · hr

c
”commit“

m, r
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Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m
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It’s secure, but . . .
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It’s secure, but . . .

• auction szenario

• both parties commit on a price they want to pay

• higher value wins

Next:

• If Alice interacts with an evil party Mallory...
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Composability

There is a proving framework that offers this!
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FCom is impossible to simulate

• attacker and environment are working together

• simulator wants to mimic the atttacker such that Z can’t distinguish
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FCom is impossible to simulate

• Problem: S must provide a transcript

•

• A similar proof exists for the binding property.

•

⇒ No protocol can ever realize FCom.
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Common Reference String Model

• Real: have a CRS

• Ideal: S simulates CRS
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A secure Commitment Scheme

Alice BobFCRS
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choose r randomly
c0 := gm · hr

c1 := encpk(m)
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c := c0||c1||c2

c
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Proof sketch

Z needs to ask A (resp. S) to get the public key.

In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .
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Backdoors to the Rescue!

ZCash Key-Ceremony
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Backdoors to the Rescue!

• ECDRBG (Elliptic Curve Deterministic Random Bit Generator) was only meant to provide
extractability for UC-proofs, the NSA couldn’t possibly have wanted to snoop

https://www.youtube.com/watch?v=D6dY-3x3teM
https://www.youtube.com/watch?v=D6dY-3x3teM
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Too long, didn’t watch
Rule #1

Don’t roll your own crypto!

what you should have learned
Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?
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Bonus-Slide: Security-Levels

Computational Security
If Brute-Force is possible
128 Bit pre-quantum are fine

Statistical Security
Bad Luck can break the scheme, but Brute-Force cannot
much smaller security-parameter allowable

Perfect Security
Impossible to break
as such no security-parameter
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