
Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Provable Security
Or how I learned to stop worrying and love the backdoor

Lukas and Florian

Provable Security
Or how I learned to stop worrying and love the backdoor

Lukas and Florian

20
18

-1
2-

29

Provable Security

• Thank you for waking up that early

• It’s a great honor for us to give this talk, espessialy in the slot directly after djb and Tanja
Lange

• Two points before, which might not get clear during this talk:
– we like provable security
– Oded Goldreich is a great cryptographer, who did amazing things for the field of

cryptography

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

1 Motivation

2 Proofs and Modells

3 The struggles of Hash Functions

4 Universal composability

1 Motivation

2 Proofs and Modells

3 The struggles of Hash Functions

4 Universal composability

20
18

-1
2-

29

Provable Security

•

• Organisation of this talk:
1. Motivation: Why do we want security proven
2. Examples: What could get wrong and how to proof security of protocols
3. 2 Examples Why modern crypto proofs are kind of weird

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Motivation

Bruce Schneier:
Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard.

Lars Knudsen:
If it’s provably secure, it probably isn’t.

Motivation

Bruce Schneier:
Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard.

Lars Knudsen:
If it’s provably secure, it probably isn’t.

20
18

-1
2-

29

Provable Security
Motivation

Motivation

Anyone, from the most clueless amateur to the best cryptographer, can create an
algorithm that he himself can’t break. It’s not even hard.

• Just because you don’t see the flaw in your scheme, it does not mean it’s not there

• strict mathematical proofs can handle this

• But you should be aware of the boundaries

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Motivation

Bruce Schneier:
Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard.

Lars Knudsen:
If it’s provably secure, it probably isn’t.

Motivation

Bruce Schneier:
Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard.

Lars Knudsen:
If it’s provably secure, it probably isn’t.

20
18

-1
2-

29

Provable Security
Motivation

Motivation

Anyone, from the most clueless amateur to the best cryptographer, can create an
algorithm that he himself can’t break. It’s not even hard.

• Just because you don’t see the flaw in your scheme, it does not mean it’s not there

• strict mathematical proofs can handle this

• But you should be aware of the boundaries

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Motivation: Meaning of security

Motivation: Meaning of security

20
18

-1
2-

29

Provable Security
Motivation

Motivation: Meaning of security

• most of you will know this example

• ECB (electronic codebook mode): mode for applying encryption defined on blocks of finite
lenth to messages of arbitrary length

• each block (read: byte) is encypted in a secure way

• but deterministic

• Simply encypting each block is not a useful definition of security

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Motivation: Security depends on the context

block cipher
decryption

Key

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryption

Key

Plaintext

Ciphertext

Motivation: Security depends on the context

block cipher
decryption

Key

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryption

Key

Plaintext

Ciphertext

20
18

-1
2-

29

Provable Security
Motivation

Motivation: Security depends on the context

• decryption of CBC (cipher block chaining) mode

• cipher is XORed on the output of the decryption

• deeper in the talk on TLS 1.3 by hanno

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Excursus: Oracle

Oracles
A protocol party
takes well defined input
answers with well defined output
typicaly used to perform operations the “real” parties can’t

Excursus: Oracle

Oracles
A protocol party
takes well defined input
answers with well defined output
typicaly used to perform operations the “real” parties can’t

20
18

-1
2-

29

Provable Security
Motivation

Excursus: Oracle

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Motivation: Use primitives right

C1

block cipher
decryption

Key

Plaintext

C2

Valid Paddings:
0x01
0x02
0x03

0x02
0x030x03

.........

Motivation: Use primitives right

C1

block cipher
decryption

Key

Plaintext

C2

Valid Paddings:
0x01
0x02
0x03

0x02
0x030x03

.........

20
18

-1
2-

29

Provable Security
Motivation

Motivation: Use primitives right

• CBC-Mode

• needs messages of specific lengths, i.e. a multiple of block size

• use padding

• excurse: Oracle
– some magical instance
– that takes input and
– generates a specific Output

• Use Padding Oracle

• allows to break byte by byte

• Learn: Use your crypto right

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Why unconditional proofs are implausible

Is 0xd41d8cd98f00b204e9800998ecf8427e an encryption of 0?

Why unconditional proofs are implausible

Is 0xd41d8cd98f00b204e9800998ecf8427e an encryption of 0?

20
18

-1
2-

29

Provable Security
Motivation

Why unconditional proofs are implausible

• What is P vs. NP? Millenium Problem

• Asume that you have build up your protocol, so let’s start to prove

• breaking a cipher should be hard, which mean it should be in NP \ P

• PAUSE

• recognising encryptions should be hard.

• if we proof this is difficulty, we would have a Problem in NP \ P

• so NP 6= P

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Why unconditional proofs are implausible

Is 0xd41d8cd98f00b204e9800998ecf8427e an encryption of 0?

Why unconditional proofs are implausible

Is 0xd41d8cd98f00b204e9800998ecf8427e an encryption of 0?20
18

-1
2-

29

Provable Security
Motivation

Why unconditional proofs are implausible

• What is P vs. NP? Millenium Problem

• Asume that you have build up your protocol, so let’s start to prove

• breaking a cipher should be hard, which mean it should be in NP \ P

• PAUSE

• recognising encryptions should be hard.

• if we proof this is difficulty, we would have a Problem in NP \ P

• so NP 6= P

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

20
18

-1
2-

29

Provable Security
Motivation

How not to do it (RSA)

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

20
18

-1
2-

29

Provable Security
Motivation

How not to do it (RSA)

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

How not to do it (RSA)
RSA

Key-generation:
Public key: n := p × q, e := 3; p, q prime
Private key: d := e−1 mod (p − 1)(q − 1)

Encryption: c := me mod n
Decryption m′ := cd mod n

RSA-Assumption
≈ It is impractical for a given public key to extract a randomly choosen plaintext
from a ciphertext.

Problems
233 mod n = 12167 for any realistic n; 3√12167 = 23. . .
“Is this an encryption of. . . ?”

20
18

-1
2-

29

Provable Security
Motivation

How not to do it (RSA)

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it

How not to do it

20
18

-1
2-

29

Provable Security
Motivation

How not to do it

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it

ElGamal + bad group = plaintext-bits
Hashes of values in small sets

How not to do it

ElGamal + bad group = plaintext-bits
Hashes of values in small sets

20
18

-1
2-

29

Provable Security
Motivation

How not to do it

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

How not to do it

ElGamal + bad group = plaintext-bits
Hashes of values in small sets

How not to do it

ElGamal + bad group = plaintext-bits
Hashes of values in small sets

20
18

-1
2-

29

Provable Security
Motivation

How not to do it

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Semantic Security and IND-CPA

Semantic Security
≈ Given the ciphertext (and the public key), it’s impractical to learn anything about the
plaintext, except it’s length.

IND-CPA
≈ Given an encryption-oracle/public key, no attacker can distinguish the encryptions of
two plaintexts (of equal length) of his choice.

Semantic Security and IND-CPA

Semantic Security
≈ Given the ciphertext (and the public key), it’s impractical to learn anything about the
plaintext, except it’s length.

IND-CPA
≈ Given an encryption-oracle/public key, no attacker can distinguish the encryptions of
two plaintexts (of equal length) of his choice.

20
18

-1
2-

29

Provable Security
Proofs and Modells

Semantic Security and IND-CPA

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Semantic Security and IND-CPA

Semantic Security
≈ Given the ciphertext (and the public key), it’s impractical to learn anything about the
plaintext, except it’s length.

IND-CPA
≈ Given an encryption-oracle/public key, no attacker can distinguish the encryptions of
two plaintexts (of equal length) of his choice.

Semantic Security and IND-CPA

Semantic Security
≈ Given the ciphertext (and the public key), it’s impractical to learn anything about the
plaintext, except it’s length.

IND-CPA
≈ Given an encryption-oracle/public key, no attacker can distinguish the encryptions of
two plaintexts (of equal length) of his choice.

20
18

-1
2-

29

Provable Security
Proofs and Modells

Semantic Security and IND-CPA

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Out-of-model-attacks

Out-of-model-attacks

20
18

-1
2-

29

Provable Security
Proofs and Modells

Out-of-model-attacks

• We already mentioned Bleichenbacher
• There will be more. . .
• Side-channel-attacks
• Composition might give evil environments
• Often the hardest part in all of cryptography

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Proofs by reduction

A
ss
u
m
p
ti
o
n
-C
h
a
ll
en
g
er

Translator

P
ro
to
co
l-
A
tt
a
ck
er

P
ro
to
co
l-
C
h
a
ll
en
g
er

A
ss
u
m
p
ti
o
n
-A
tt
a
ck
er

Assumption-

Game

Protocol-

Game

Proofs by reduction

A
ss
u
m
p
ti
o
n
-C
h
a
ll
en
g
er

Translator

P
ro
to
co
l-
A
tt
a
ck
er

P
ro
to
co
l-
C
h
a
ll
en
g
er

A
ss
u
m
p
ti
o
n
-A
tt
a
ck
er

Assumption-

Game

Protocol-

Game

20
18

-1
2-

29

Provable Security
Proofs and Modells

Proofs by reduction

• if we can give a translator, these assumptions contradict

• so either the assumption is wrong, or there is no adversary.

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

20
18

-1
2-

29

Provable Security
Proofs and Modells

ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

20
18

-1
2-

29

Provable Security
Proofs and Modells

ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)

Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)

Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

20
18

-1
2-

29

Provable Security
Proofs and Modells

ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

20
18

-1
2-

29

Provable Security
Proofs and Modells

ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

ElGamal
Prerequisites

Let p, q be prime with p = 2q + 1 and q > 2
Let g := 4
All operations on exponents are modulo q
All operations on the bases are modulo p
Zq := {0, 1, . . . , q − 1}

ElGamal
Key-generation: sk := x ← Zq; pk := gx

Encryption: r ← Zq; c := (c0, c1) := (g r , [gx]r ·m)
Decryption: m′ := c1 · [c0]−x = g rx ·m · [g r]−x = m · g rx−rx

DDH-Assumption

For random x , y , z ∈ Zq: (gx , gy , gz) c≡ (gx , gy , gxy)

20
18

-1
2-

29

Provable Security
Proofs and Modells

ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-Proof of ElGamal

Security-Proof of ElGamal

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-Proof of ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-Proof of ElGamal
gx; gy; gz

gx

m0;m1

gy; gz ·mb

b0

b00 := (b = b0)

b f0; 1g

D
D
H
-C

h
al
le
n
ge
r

E
lG

am
al
-A

tt
ac
ke
r

Translator

b00

Successrate of Attacker := 1
2 + ε.

If xy = z : perfect simulation, inherit 1
2 + ε

If xy 6= z : no correlation between c and mb =⇒ 1
2

1
2 ·

1
2 + 1

2 ·
(

1
2 + ε

)
= 1

2 + ε
2

Security-Proof of ElGamal
gx; gy; gz

gx

m0;m1

gy; gz ·mb

b0

b00 := (b = b0)

b f0; 1g

D
D
H
-C

h
al
le
n
ge
r

E
lG

am
al
-A

tt
ac
ke
r

Translator

b00

Successrate of Attacker := 1
2 + ε.

If xy = z : perfect simulation, inherit 1
2 + ε

If xy 6= z : no correlation between c and mb =⇒ 1
2

1
2 ·

1
2 + 1

2 ·
(

1
2 + ε

)
= 1

2 + ε
2

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-Proof of ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-Proof of ElGamal
gx; gy; gz

gx

m0;m1

gy; gz ·mb

b0

b00 := (b = b0)

b f0; 1g

D
D
H
-C

h
al
le
n
ge
r

E
lG

am
al
-A

tt
ac
ke
r

Translator

b00

Successrate of Attacker := 1
2 + ε.

If xy = z : perfect simulation, inherit 1
2 + ε

If xy 6= z : no correlation between c and mb =⇒ 1
2

1
2 ·

1
2 + 1

2 ·
(

1
2 + ε

)
= 1

2 + ε
2

Security-Proof of ElGamal
gx; gy; gz

gx

m0;m1

gy; gz ·mb

b0

b00 := (b = b0)

b f0; 1g

D
D
H
-C

h
al
le
n
ge
r

E
lG

am
al
-A

tt
ac
ke
r

Translator

b00

Successrate of Attacker := 1
2 + ε.

If xy = z : perfect simulation, inherit 1
2 + ε

If xy 6= z : no correlation between c and mb =⇒ 1
2

1
2 ·

1
2 + 1

2 ·
(

1
2 + ε

)
= 1

2 + ε
2

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-Proof of ElGamal

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

20
18

-1
2-

29

Provable Security
Proofs and Modells

What did we gain?

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

20
18

-1
2-

29

Provable Security
Proofs and Modells

What did we gain?

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

What did we gain?

Complex protocols become possible

TLS-Handshake – simplified (CC-BY “Essich”)

Prevent problems from weird interactions

20
18

-1
2-

29

Provable Security
Proofs and Modells

What did we gain?

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

Security-models
Game-Based

(Generally) easier proofs
Often less intuitive meaning
Does not scale

Simulation-Based
Define ideal functionality with trusted party
Proof that protocol can be simulated with output
(Usually) more intuitive meaning
(Usually) harder to do

Proof-Artifacts
Public keys for which nobody has the secret key, . . .
Potentially useless, potentially not

20
18

-1
2-

29

Provable Security
Proofs and Modells

Security-models

remove this

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Hash-Functions

Hash-Functions

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Hash-Functions

Used Hash-Function: SHA3-256

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Random-Oracle-Model

A random oracle

(Dwarf: CC-BY “Fallaner”)

Random-Oracle-Model

A random oracle

(Dwarf: CC-BY “Fallaner”)20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Random-Oracle-Model

• Hash functions are difficult to handle in proofs

• especially in an abstract way

How a real Random oracle would look like:

• no one ever found a box with a dwarf

• those boxes would be difficult to handle

• ⇒ better use a hash function everyone can evaluate

• Problems:
1. would be difficult to handle
2. is not a valid abstraction

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair

Modify encyption like this:
If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair

Modify encyption like this:
If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext

Problem: Random oracles are no valid abstraction

Let (Gen,Enc,Dec) be a secure encryption scheme.

Let H be either a Hash function or a random oracle.

Define the following encryption scheme:

Key-generation as before: Gen′ := Gen, generates a key-pair
Modify encyption like this:

If the message m looks like code, evaluate it on random input x .

If Run(m(x)) 6= H(x), just use Enc.

Otherwise, use the secret key as the ciphertext20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Problem: Random oracles are no valid
abstraction

1. Note: Code execution attack is not the problem here.

2. assume that the attacker has a encryption oracle, i.e. he can force someone to

3. Lets construct a scheme which is secure in the ROM, but insecure for any Hash function

4. presented counterexample is dervied from one by Jonathan Katz

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

What to do now?

Goldreich:
It should be clear that the Random Oracle Methodology is not sound; that is,
the mere fact that a scheme is secure in the ROM cannot taken as evidence
(or indication) to the security.

What to do now?

Goldreich:
It should be clear that the Random Oracle Methodology is not sound; that is,
the mere fact that a scheme is secure in the ROM cannot taken as evidence
(or indication) to the security.

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

What to do now?

• authors came to harsh statements

It should be clear that the Random Oracle Methodology is not sound; that is, the mere
fact that a scheme is secure in the ROM cannot taken as evidence (or indication) to
the security.

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

The Serpent of the Random Oracle Model
Goldreich:

Indeed, what happened with the ROM reminds us of the biblical story of the
Bronze Serpent. [. . .] This story illustrates the process by which a good thing
may become a fetish, and what to do in such a case.

The Serpent of the Random Oracle Model
Goldreich:

Indeed, what happened with the ROM reminds us of the biblical story of the
Bronze Serpent. [. . .] This story illustrates the process by which a good thing
may become a fetish, and what to do in such a case.

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

The Serpent of the Random Oracle Model

Indeed, what happened with the ROM reminds us of the biblical story of the Bronze
Serpent. [. . .] This story illustrates the process by which a good thing may become a
fetish, and what to do in such a case.

• spoiler alert: the snake had to be destroyed.
– looking at the serpent healed snakebites; Hezekia destroyed it

• if you need to cite the bible as a cryptographer, you point may stand on feet of clay.

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

What to do now?

Koblitz, Menezes:
if one of the world’s leading specialists [. . .] puts forth his best effort to
undermine the validity [. . .] of the random oracle assumption, and if the flawed
construction is the best he can do, then perhaps there is more reason than ever
to have confidence in the random oracle model.

What to do now?

Koblitz, Menezes:
if one of the world’s leading specialists [. . .] puts forth his best effort to
undermine the validity [. . .] of the random oracle assumption, and if the flawed
construction is the best he can do, then perhaps there is more reason than ever
to have confidence in the random oracle model.

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

What to do now?

if one of the world’s leading specialists [. . .] puts forth his best effort to undermine
the validity [. . .] of the random oracle assumption, and if the flawed construction is
the best he can do, then perhaps there is more reason than ever to have confidence in
the random oracle model.

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Avoiding the Random Oracle Model

Gennaro-Halevi-Rabin Signatures: Duplicate-signature-key-selection-attack
Boneh-Boyen Signatures: hx vs (r , g

1
x+h+yr)

Avoiding the Random Oracle Model

Gennaro-Halevi-Rabin Signatures: Duplicate-signature-key-selection-attack
Boneh-Boyen Signatures: hx vs (r , g

1
x+h+yr)

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Avoiding the Random Oracle Model

• For Gennaro-Halevi-Rabin Signatures it was shown that they have a strange Property:
Duplicate-signature-key-selection-attacks.

• given a message and a signature, one can Calculate another key pair, such that the
signature is valid for the same message under the new key

• Boneh-Boyen: Avoiding ROM made signatures twice as long and much more difficult to
implement

• is this worth the effort?

Next:

• you might have noticed that we move more and more foreward into the beauty of
proving-brain-fuck. For the next step I need to introduce another nice cryptographic tool
called commitment schemes

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

A commitment scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c

”commit“
m, r

”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c

”commit“
m, r

”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

A commitment scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

A commitment scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r

”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r

”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

A commitment scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m

A commitment scheme

Alice Bob
choose r randomly

c := gm · hr

c
”commit“

m, r
”unveil“

Binding: after sending c, Alice is bound to m

Hiding: given c, Bob can’t learn anything about m20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

A commitment scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

It’s secure, but . . .

Alice Bob
choose r randomly

c := gm · hr
choose r ′ randomly

c ′ := gm′ · hr ′

c
c ′
m, r
m′, r ′

if m > m′ Alice wins, otherwise Bob

It’s secure, but . . .

Alice Bob
choose r randomly

c := gm · hr
choose r ′ randomly

c ′ := gm′ · hr ′

c
c ′
m, r
m′, r ′

if m > m′ Alice wins, otherwise Bob20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

It’s secure, but . . .

• auction szenario

• both parties commit on a price they want to pay

• higher value wins

Next:

• If Alice interacts with an evil party Mallory...

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

It’s secure, but . . .

Alice Mallory
choose r randomly

c := gm · hr

c
c ′ := g · c

m, r
m + 1, r

Congratulations, Mallory

It’s secure, but . . .

Alice Mallory
choose r randomly

c := gm · hr

c
c ′ := g · c

m, r
m + 1, r

Congratulations, Mallory20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

It’s secure, but . . .

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Composability

Security definitions should contain all
imaginable properties
A protocol should be secure, regardless
of the context.

Composability

Security definitions should contain all
imaginable properties
A protocol should be secure, regardless
of the context.

20
18

-1
2-

29

Provable Security
The struggles of Hash Functions

Composability

There is a proving framework that offers this!

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

UC – Universal composability

real ideal

∀A∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

UC – Universal composability

real ideal

∀A∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

20
18

-1
2-

29

Provable Security
Universal composability

UC – Universal composability

• Explain: F, Z, A, S

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

UC – Universal composability

real ideal

∀A

∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

UC – Universal composability

real ideal

∀A

∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

20
18

-1
2-

29

Provable Security
Universal composability

UC – Universal composability

• Explain: F, Z, A, S

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

UC – Universal composability

real ideal

∀A∃S

∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

UC – Universal composability

real ideal

∀A∃S

∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

20
18

-1
2-

29

Provable Security
Universal composability

UC – Universal composability

• Explain: F, Z, A, S

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

UC – Universal composability

real ideal

∀A∃S∀Z :

{Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

UC – Universal composability

real ideal

∀A∃S∀Z :

{Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

20
18

-1
2-

29

Provable Security
Universal composability

UC – Universal composability

• Explain: F, Z, A, S

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

UC – Universal composability

real ideal

∀A∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}

UC – Universal composability

real ideal

∀A∃S∀Z : {Viewπ,A(Z)} ≈c {ViewF ,S(Z)}20
18

-1
2-

29

Provable Security
Universal composability

UC – Universal composability

• Explain: F, Z, A, S

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom

Alice Bob

FCom

Alice Bob

20
18

-1
2-

29

Provable Security
Universal composability

FCom

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom

Alice Bob

FCom

Alice Bob

20
18

-1
2-

29

Provable Security
Universal composability

FCom

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom

Alice Bob

FCom

Alice Bob

20
18

-1
2-

29

Provable Security
Universal composability

FCom

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom

Alice Bob

FCom

Alice Bob

20
18

-1
2-

29

Provable Security
Universal composability

FCom

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

• attacker and environment are working together

• simulator wants to mimic the atttacker such that Z can’t distinguish

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

FCom is impossible to simulate

real ideal

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

FCom is impossible to simulate

real ideal

?????

FCom is impossible to simulate

real ideal

?????

20
18

-1
2-

29

Provable Security
Universal composability

FCom is impossible to simulate

• Problem: S must provide a transcript

•

• A similar proof exists for the binding property.

•

⇒ No protocol can ever realize FCom.

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

The Common Reference String Model

The Common Reference String Model

20
18

-1
2-

29

Provable Security
Universal composability

The Common Reference String Model

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

The Common Reference String Model

The Common Reference String Model

20
18

-1
2-

29

Provable Security
Universal composability

The Common Reference String Model

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

The Common Reference String Model

The Common Reference String Model

20
18

-1
2-

29

Provable Security
Universal composability

The Common Reference String Model

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Common Reference String Model

Common Reference String Model

20
18

-1
2-

29

Provable Security
Universal composability

Common Reference String Model

• Real: have a CRS

• Ideal: S simulates CRS

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

A secure Commitment Scheme

Alice BobFCRS

pk, g , h

choose r randomly
c0 := gm · hr

c1 := encpk(m)
c2 := proof (c0 ≡ c1)
c := c0||c1||c2

c
m, r

A secure Commitment Scheme

Alice BobFCRS

pk, g , h

choose r randomly
c0 := gm · hr

c1 := encpk(m)
c2 := proof (c0 ≡ c1)
c := c0||c1||c2

c
m, r20

18
-1

2-
29

Provable Security
Universal composability

A secure Commitment Scheme

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Proof sketch

Z needs to ask A (resp. S) to get the public key.

In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

Proof sketch

Z needs to ask A (resp. S) to get the public key.

In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

20
18

-1
2-

29

Provable Security
Universal composability

Proof sketch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .

Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .

Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

20
18

-1
2-

29

Provable Security
Universal composability

Proof sketch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .

Now, S can extract b from commitments, so it can be send to FCOM .

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .

Now, S can extract b from commitments, so it can be send to FCOM .

20
18

-1
2-

29

Provable Security
Universal composability

Proof sketch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

Proof sketch

Z needs to ask A (resp. S) to get the public key.
In the ideal szenario, there is no FCRS .
Instead, S generates a key pair (pk, sk), along with the generators g and h, such
that he knows a value x with h = gx .
Now, S can extract b from commitments, so it can be send to FCOM .

20
18

-1
2-

29

Provable Security
Universal composability

Proof sketch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Backdoors to the Rescue!

ZCash Key-Ceremony

Backdoors to the Rescue!

ZCash Key-Ceremony

20
18

-1
2-

29

Provable Security
Universal composability

Backdoors to the Rescue!

• ECDRBG (Elliptic Curve Deterministic Random Bit Generator) was only meant to provide
extractability for UC-proofs, the NSA couldn’t possibly have wanted to snoop

https://www.youtube.com/watch?v=D6dY-3x3teM
https://www.youtube.com/watch?v=D6dY-3x3teM

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!

what you should have learned
Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!

what you should have learned
Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?

20
18

-1
2-

29

Provable Security
Universal composability

Too long, didn’t watch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!
what you should have learned

Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!
what you should have learned

Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?

20
18

-1
2-

29

Provable Security
Universal composability

Too long, didn’t watch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!
what you should have learned

Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?

Too long, didn’t watch
Rule #1

Don’t roll your own crypto!
what you should have learned

Security is difficult, employ proofs
Be aware of their limitations
Good heuristics are better than nothing
People might actually read simpler proofs

Questions?20
18

-1
2-

29

Provable Security
Universal composability

Too long, didn’t watch

Motivation Proofs and Modells The struggles of Hash Functions Universal composability

Bonus-Slide: Security-Levels

Computational Security
If Brute-Force is possible
128 Bit pre-quantum are fine

Statistical Security
Bad Luck can break the scheme, but Brute-Force cannot
much smaller security-parameter allowable

Perfect Security
Impossible to break
as such no security-parameter

Bonus-Slide: Security-Levels

Computational Security
If Brute-Force is possible
128 Bit pre-quantum are fine

Statistical Security
Bad Luck can break the scheme, but Brute-Force cannot
much smaller security-parameter allowable

Perfect Security
Impossible to break
as such no security-parameter20

18
-1

2-
29

Provable Security
Universal composability

Bonus-Slide: Security-Levels

	Motivation
	Proofs and Modells
	The struggles of Hash Functions
	Universal composability

