Modeling and Simulation of Physical Systems for Hobbyists

Manuel Aiple
35C3 - 29 December 2018

$\underbrace{\text { Hobbyists }}$
With commonly available tools

Why use Simulation?

Why use Simulation?

- Placeholder for hardware components
- Virtual test bench

Simple
Detailed

Apple Moves
Down

Apple Accelerates Down

Apple Accelerates Down Until Saturation

As simple as possible, as detailed as necessary

Differentiation \mathcal{E} Integration

Differentiation \& Integration

Position
$x(t)$

Velocity

$$
v(t)
$$

Acceleration
$\boldsymbol{a}(t)$

Differentiation \& Integration Differentiate

Differentiation \& Integration

Differentiation \& Integration

Differentiation \& Integration

Differentiation \& Integration

Always integrate for simulation

Euler Method

$\lim _{h \rightarrow 0} x(t+h)=x(t)+\lim _{h \rightarrow 0} v(t) h \quad \rightarrow$ Not usable for computation

Euler Method

$$
\lim _{h \rightarrow 0} x(t+h)=x(t)+\lim _{h \rightarrow 0} v(t) h \quad \rightarrow \text { Not usable for computation }
$$

Replace infinitesimal $\lim _{h \rightarrow 0} h$ with finite T_{s} and only calculate for integer multiples k of T_{s} : $t=k T_{s}$

Euler Method

$$
\lim _{h \rightarrow 0} x(t+h)=x(t)+\lim _{h \rightarrow 0} v(t) h \quad \rightarrow \text { Not usable for computation }
$$

Replace infinitesimal $\lim _{h \rightarrow 0} h$ with finite T_{s} and only calculate for integer multiples k of T_{s} :

$$
t=k T_{s}
$$

$$
x\left(\frac{t+T_{s}}{T_{s}}\right)=x\left(\frac{t}{T_{s}}\right)+v\left(\frac{t}{T_{s}}\right) T_{s}
$$

Euler Method

$$
\lim _{h \rightarrow 0} x(t+h)=x(t)+\lim _{h \rightarrow 0} v(t) h \quad \rightarrow \text { Not usable for computation }
$$

Replace infinitesimal $\lim _{h \rightarrow 0} h$ with finite T_{s} and only calculate for integer multiples k of T_{s} :

$$
t=k T_{s}
$$

$$
\begin{gathered}
x\left(\frac{t+T_{s}}{T_{s}}\right)=x\left(\frac{t}{T_{s}}\right)+v\left(\frac{t}{T_{s}}\right) T_{s} \\
x(k+1)=x(k)+v(k) T_{s}
\end{gathered}
$$

Euler Method

$$
\lim _{h \rightarrow 0} x(t+h)=x(t)+\lim _{h \rightarrow 0} v(t) h \quad \rightarrow \text { Not usable for computation }
$$

Replace infinitesimal $\lim _{h \rightarrow 0} h$ with finite T_{s} and only calculate for integer multiples k of T_{s} :

$$
t=k T_{s}
$$

$$
\begin{gathered}
x\left(\frac{t+T_{s}}{T_{s}}\right)=x\left(\frac{t}{T_{s}}\right)+v\left(\frac{t}{T_{s}}\right) T_{s} \\
x(k+1)=x(k)+v(k) T_{s}
\end{gathered}
$$

Keep T_{s} small

Building Blocks Mechanics

Building Blocks Mechanics

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Second law of motion

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Second law of motion

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t} \quad T=1 \frac{\mathrm{~d} \omega}{\mathrm{~d} t}
$$

Second law of motion

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t} \quad T=1 \frac{\mathrm{~d} \omega}{\mathrm{~d} t}
$$

Second law of motion

$$
F=M g
$$

Weight

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t} \quad T=1 \frac{\mathrm{~d} \omega}{\mathrm{~d} t}
$$

Second law of motion

$$
F=M g
$$

Weight

$$
F=-\kappa\left(x-x_{0}\right)
$$

Spring force

Building Blocks Mechanics

$$
F=M \frac{\mathrm{~d} v}{\mathrm{~d} t} \quad T=\mathrm{l} \frac{\mathrm{~d} \omega}{\mathrm{~d} t}
$$

Second law of motion

$$
F=M g
$$

$$
F=-\kappa\left(x-x_{0}\right)
$$

$$
F=-b v
$$

Viscous damping

Building Blocks Electric

Building Blocks Electric

Resistor

Building Blocks Electric

R	$V=R i$	Resistor
L	$V=L \frac{\mathrm{~d} i}{\mathrm{~d} t}$	
Inductance		

Building Blocks Electric

$$
V=R i
$$

Resistor
L

$$
V=L \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

Inductance

$$
i=C \frac{\mathrm{~d} V}{\mathrm{~d} t}
$$

Capacitor

Building Blocks Electromechanics

Building Blocks Electromechanics

$$
T=K_{t} i
$$

Motor

$$
T=K_{t} i
$$

$$
V=K_{v} \omega
$$

Generator

$$
\begin{aligned}
& T=K_{t} i \\
& V \text { Motor } \\
& V \\
& V \\
& \mathrm{I} \frac{\mathrm{~d} \omega}{\mathrm{~d} t}=K_{v} i+L \frac{\mathrm{~d} i}{\mathrm{~d} t}+K_{v} \omega \\
& \text { Generator }
\end{aligned}
$$

Tips \& Tricks

1. Sampling Period $\left(T_{s}\right)$: min. 100x faster than system time constant
2. Block Diagram: helps to keep overview
3. Adapt the model to your needs: different questions might need different models
4. Specialized Tools (SciPy, OpenModelica/OMEdit, Scilab/XCos):

- for complex models or as reference
- better differential equation solving (BDF, Runge-Kutta, etc.)
- efficient through variable time-step
- nice data logging and visualization tools

Motor Model Block Diagram

Background \& Further Reading (Wikipedia)

- Scientific modeling
- Ordinary differential equation
- Numerical methods for ordinary differential equations
- Euler Method
- Runge-Kutta
- Backward differentiation formula (BDF)
- Discrete time and continuous time
- State-space representation

