Uncovering Vulnerabilities in Hoermann BiSecur

An AES Encrypted Radio System

Markus Müllner, Markus Kammerstetter, Christian Kudera and Daniel Burian

Trustworks KG

Web: https://www.trustworks.at E-Mail: office <at> trustworks.at

Who we are

- Security consulting, engineering and research company, founded 2012
- Security consulting services since 2005
- Core business area:
 - Security audits of Web-applications and enterprise software products down to embedded devices and microchips
 - Embedded & Security Engineering
 - High-speed cryptography
- Own Hardware Security Lab to support embedded security audits

Our Hardware Security Lab

- Dedicated lab equipment such as FIB and SEM to conduct embedded security audits down to the microchip level
- Non-invasive (SCA, FI) to fully-invasive (FIB/SEM) evaluation methods
- General idea: More advanced lab tools reduce required analysis time during security audits

Why Garage Doors ?

- Many wireless garage door systems are known to be insecure:
 - Mostly static or simple rolling code schemes
 - No encryption
 - Replay attacks and cloning possible
- Hoermann BiSecur:
 - Use of AES algorithm, established high-security system
 - Big security improvement over "classical" systems
 - Two of our security analysts already had a BiSecur system at home

Open Questions ...

Trust

We have those systems at home, are they really secure ?

- Is the system implementation secure in practice ?
 - How does the system use AES encryption ?
 - How is the key material generated and used ?
 - Is the key material individual ?
 - What messages are exchanged on the RF interface ?
 - Kerckhoff's principle: Is the system secure if all system internals except for the key material are known ?

\rightarrow We decided to conduct a security audit

Hand Transmitters

- We already had a few
- We also obtained new ones
- Result:

Trustvorks

- Different models
- Different manufacturing dates
- Our analysis will cover a broader range

RF Signal Analysis

- Manual: Signal at 868 MHz
- Use of BladeRF SDR
- Goals:
 - Find exact frequency
 - Identify modulation scheme
 - Identify channel coding
 - Decode RF frames

Finding the Exact Frequency

- GNU Radio SDR Suite
- Spectral analysis (Waterfall Plot)

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Finding the Exact Frequency

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Identify Channel Coding

- Typical transmissions contain a synchronizing block (i.e. alternating high/low waveform)
- Allows receiver to synchronize its symbol rate to the symbol rate of the transmitter
- Allows us to determine the symbol rate as well

Identify Channel Coding

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Identify Channel Coding

Channel Coding Result

- We analyzed the captured dump file
- Demodulated signal contains either '01' or '10' sequences --> Manchester encoding
- 2 symbols represent 1 bit of data

Decoding RF Frames

- Decoding of data bits from recorded frame (Python script with GNU Radio framework)
- Assumption: CRC value at end (unknown CRC)
- Not sure yet if we got everything right

Field	Length (Byte)	Comment
Constant	1	0x70, 0x50
Serial Number	4	unique to device
Encrypted Data	16	-
Checksum	1	CRC (unknown)

Hardware Analysis

Hardware Components

• SX1230 --> Radio Chip with public datasheet

SX1230

ADVANCED COMMUNICATIONS & SENSING

DATASHEET

SX1230 - Integrated Transmitter IC

Narrow/wideband 315 MHz, 434 MHz 868 MHz and 915 MHz band Transmitter

GENERAL DESCRIPTION

The SX1230 is a fully integrated transmitter which can operate in the 315, 434, 868 and 915 MHz licence free ISM bands.

APPLICATIONS

- Remote Keyless Entry (RKE)
- Remote Control / Security Systems

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Hardware Components

- Unknown microcontroller (PIC ?)
- Microchip Logo and "EE001 20000 1507AHW"
- What do we know ?
 - 28 Pins
 - QFN package
 - Chip older than 3 years, so no Atmel
 - GND on Pins 5 and 16
 - PCB likely has test points for programming

Identifying the Controller

- Let's search a component distributor:
 - "manufacturer: Microchip", 28-pins, QFN
 - Results: PIC16F, PIC18F, PIC24F, PIC32F
 - Let's look into their datasheets !
- PIC24 and PIC32 would need GND on Pin24, we don't have that on the PCB
 --> It must be either PIC16F or PIC18F

Programming Pins

- Pins required for PIC programming are: /MCLR, PGD, PGC as well as Vdd and GND
- 28-pin PIC16F and PIC18F have their programming pins at the same location
- Let's PICkit3 it to read the device number !

Programming Pads

1	MCLR
2	VDD
3	Vss
4	PGD
5	PGC

PICkit3

• We created a little break-out board

PICkit3: Results

• MCU is PIC18F26K20

PICkit 3 Pro	ogrammer	r - BUR141	320628				—		\times
<u>File</u> <u>D</u> evic	e Family	<u>P</u> rogran	nmer <u>T</u>	ools \	/iew <u>H</u> elp				
PIC18F_K_C	Configuratio	n							
Device:	PIC18E2	26K20		Confi	ouration: OS	00 0F1	D 0100	0081	
	Code Protect 8000 E00F 400F							0001	
User IDs:	Jser IDs: FF FF FF FF FF FF FF FF FF								
Checksum:	0A6C			OSCO	CAL:		BandGap:		
						_			
Reading d	evice:			_	_		Mic	ROCH	11P
Program N	lemory	. EE U	serlDs	Config.	Done.	•			
							D PICkit 3		
Read	Write	Verify	Frase	- F	Blank Check		JOn J/MCIP	3.3	-
Hodd	THILD	Volity	21030				J /MCLN		
- Program M	emory								
	Hex Onl	y ~	Source:	Read fro	om PIC18F26	SK20			
0000	0000	0000	0000	0000	0000	0000	0000	0000	^
0010	0000	0000	0000	0000	0000	0000	0000	0000	
0020	0000	0000	0000	0000	0000	0000	0000	0000	
0030	0000	0000	0000	0000	0000	0000	0000	0000	
0040	0000	0000	0000	0000	0000	0000	0000	0000	
0050	0000	0000	0000	0000	0000	0000	0000	0000	
0060	0000	0000	0000	0000	0000	0000	0000 0000		
0070	0000	0000	0000	0000	0000	0000	0000	0000	
0800	0000	0000	0000	0000	0000	0000	0000	0000	
0090	0000	0000	0000	0000	0000	0000	0000	0000	
00A0	0000	0000	0000	0000	0000	0000	0000	0000	
0080	0000	0000	0000	0000	0000	0000	0000	0000	~
EEPROM	Data						Δ.	to Import H	ov
🗹 Enabled	Hex Onl	y v					+	Write Devic	ex ;e
000 FF F	F FF FF	FF FF A	0 4E 00	00 FF	00 00 01	F0 F2 /	^ R	ead Device	+
010 81 8	6 F0 79	E0 B0 8	7 B1 31	F1 43	2C D1 96	F2 30	B	kport Hex Fi	le
020 4F 9	C 27 2E	F1 E7 6	2 2B 42	86 04	3F 3D 68	04 01		ml. U.M	-
030 00 F	F 00 00	02 D6 F	F FF FF	FF FF	00 00 01	F0 F2 \	P	LKIT	3

PICkit3: Results

• All Flash blocks are locked (code protection)

Device Configuration Words may be edited here at the bit level. Refer to device datasheet for specific configuration bit functions. • Unimplemented bit 1 = Configuration bit. Click to toggle value. Name Address Value Bit Edit CONFIG1 300000 0800 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <t< th=""><th></th><th>Configuration Wo</th><th colspan="7">Configuration Word Editor X</th></t<>		Configuration Wo	Configuration Word Editor X							
Name Address Value BILEDI CONFIG1 30000 0800 0		Device Configurat	Device Configuration Words may be edited here at the bit level. Refer to device datasheet for specific configuration bit functions. - = Unimplemented bit 1 = Configuration bit. Click to toggle value.							
CONFIG1 300000 0800 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG2 300002 0F1D 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG2 300002 0F1D 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG3 300004 0100 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG3 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 </th <th></th> <th>Name</th> <th>Address</th> <th colspan="5">Address Value Bit Edit</th>		Name	Address	Address Value Bit Edit						
CONFIG2 300002 OF1D 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG3 300004 0100 0 - 0 0 1 1 1 1 1 1 1 1 1 0 1 CONFIG3 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG3 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG5 300008 8000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG5 300008 8000 15 14 13 12 11 10 9 8 7 6 <th></th> <th>CONFIG1</th> <th>300000</th> <th>0800</th> <th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 - - 1 0 0 0 - - - - -</th> <th>-</th>		CONFIG1	300000	0800	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 - - 1 0 0 0 - - - - -	-				
CONFIG3 300004 0100 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG3 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG4 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 CONFIG5 300008 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		CONFIG2	300002	0F1D	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 - - 0 1 1 1 1 - - 1 1 1 0	0				
CONFIG4 300006 0081 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG5 300008 8000 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONFIG5 300008 8000 1 0 - - - 0 1<		CONFIG3	300004	0100	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - - 0 0 0 1 - - - - -	-				
CONFIG5 300008 8000 1 1 10 9 8 7 6 5 4 3 2 1 0 CONFIG5 300008 8000 1 0 - - - - - 0		CONFIG4	300006	0081	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 - - - - - 1 0 - - 0 -	0				
CONFIG6 DUMA EOOF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1		CONFIG5	300008	8000	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0 - - - - - - 0 0 0	0				
EEPROM CONFIG7 30000C 400F 1 1 0 8 7 6 5 4 3 2 1 0 not locked Unimplemented bits are displayed in the Value column as selected in menu Tools > Display Unimplemented Config Bits Save Cancel		CONFIG6	JUA	E00F	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 1 1 - - - - - 1 1 1	0				
Not locked Unimplemented bits are displayed in the Value column as selected in menu Tools > Display Unimplemented Config Bits Save Cancel	EEPROM	CONFIG7	30000C	400F	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 - 1 - - - - - - 1 1 1	0				
	not locked	layed in the Value column as selected Save Cance	1							

PIC Firmware Extraction Techniques

- To analyze the firmware and thus the system for security vulnerabilities, we need to analyze the firmware
- The firmware is currently locked
- PIC locking mechanism:
 "locking bits" --> security fuse
- Back to security-by-obscurity ?

Trustvorks

IC Analysis

- How is the security fuse logic implemented on the PIC18F microcontroller ?
- Approach:
 - IC Decapsulation
 - (Rough) microscopic analysis

IC Analysis

IC Analysis

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Fuse Close-up

Method 1: Invasive FIB Circuit Edit

- Approach:
 - Identify security fuse logic (might involve IC deprocessing and analysis other PICs)
 - 2. Bypass security fuse with FIB circuit edit
- Advantage: High success rate
- Disadvantage: Large time effort if no existing recipe

Method 1: Invasive FIB Circuit Edit

Method 1: Invasive FIB Circuit Edit

Method 2: "Bunnie" Attack

- Fuses can be cleared with UV, but Flash needs to be protected (e.g. tape or permanent marker)
- Shields avoid direct UV exposure (see our die image)
- UV light might still get in at a steep angle
 --> "Bunnie" attack (original idea by Bunnie Huang)
- Advantage: Easy to conduct and our chip is already open
- Disadvantage: Unclear whether we have anti-fuses, potential to damage bond-wires during masking

Method 3: Voltage Glitching

 Our glitch amplifier can deliver <12ns pulses at high drive current

- Advantage: easy to conduct
- Disadvantage: Unclear if successful on PIC18F, glitch parameters need to be found first

Method 4: The Easy Way :-)

- There is a trivial design issue in the PIC18F security fuse logic
- Memory blocks have individual fuse bits
- A block can be reprogrammed while the others keep their original content
- Presented at 27C3 (2010):
 - [Milosch Meriac, 27C3: Heart of Darkness exploring the uncharted backwaters of HID iCLASS security, https://www.openpcd.org/images/HID-iCLASS-security.pdf]

We Implemented a PIC **Firmware Extraction Tool**

- Breadboard HW
- FTDI (USB-TTL)
- Short SW Script

- 5 memory blocks (Flash)
- Individual lock bits

- Remove lock bit of boot
 block --> boot block is erased
- The other blocks remain intact

- Dump code reads remaining 4 code blocks
- Output on UART

- We have a successful dump of the 4 code blocks now
- We overwrote the 2k boot block and the content is lost :-(

- Solution: Take another PIC with identical programming
- Restart the process

- This time we unlock a code block
- The code block is thus erased

- Wait until execution jumps from another block to our dump block
- NOP slide
- Read the boot block

- Both PICs are (partially) dumped now
- We combine the two partials dumps to obtain a full dump
- We can re-flash the two PICs so that they contain their original programming

Firmware Analysis

• Analysis with Ida Pro tool (supports PIC)

Trustw

Ξ IDA View-A × Hex View-1 ROM:7D14 ; ======== SUBROUTINE _____ ROM:7D14 ROM:7D14 ROM:7D14 sub_ROM_7D14: ; CODE XREF: sub_ROM_755A+2C[†]p ROM:7D14 WREG, byte_RAM_374 movff R0M:7D18 movff byte RAM 374, byte RAM 377 ROM:7D1C mov1b ROM:7D1E clrf byte RAM 376, BANKED R0M:7D20 ROM:7D20 loc ROM 7D20: ; CODE XREF: sub ROM 7D14+2A1j byte_RAM_377, 7, BANKED R0M:7D20 btfss R0M:7D22 bra loc ROM 7D2A R0M:7D24 movlw 1 R0M:7D26 movwf byte_RAM_375, BANKED loc_ROM_7D2C R0M:7D28 bra ROM:7D2A ROM:7D2A ROM:7D2A loc ROM 7D2A: ; CODE XREF: sub ROM 7D14+Etj ROM:7D2A clrf byte RAM 375, BANKED ROM:7D2C ROM:7D2C loc ROM 7D2C: ; CODE XREF: sub ROM 7D14+141 ROM:7D2C STATUS, C, ACCESS bcf ROM:7D2E rlcf byte RAM 377, f, BANKED R0M:7D30 movf byte RAM 375, w, BANKED R0M:7D32 bz 1oc ROM 7D38 R0M:7D34 movlw R0M:7D36 bute RAM 377, f, BANKED xorwf R0M:7D38 ROM:7D38 loc ROM 7D38: ; CODE XREF: sub ROM 7D14+1E[†]j R0M:7D38 incf byte_RAM_376, f, BANKED ROM:7D3A movlw ROM:7D3C cpfsqt bute RAM 376, BANKED ROM:7D3E bra 1oc ROM 7D20 R0M:7D40 movf byte RAM 377, w, BANKED R0M:7D42 return 6 ROM:7D42 ; End of function sub ROM 7D14 00007D12 00007D12: sub_ROM_7CE4+2E (Synchronized with Hex View-1)

Firmware Analysis

 Firmware analysis provides deep implementation insight, including: RF protocol, checksum computation, encryption methods

H	IDA View-A		×	\bigcirc		ł	Hex View	-1		×							
ROM:FC7C		byte	63,	70,	77,	7B,0	F2, 6E	, 6F	,005,	30,	, 1,	, 67,	, 2B,	ØFE,	0D7,	ØAB,	76
ROM:FC7C		byte	OCA,	82,	0C9,	7D,0	FA, 59	, 47	, OF 0,	OAD,	0D4,	, 0A2,	OAF,	90,	0A4,	72,	0C 0
ROM:FC7C		byte	0B7,	ØFD,	93,	26, 3	36, 3F	,0F7	, OCC,	34,	0A5,	,0E5,	,0F1,	71,	0D8,	31,	15
ROM:FC7C		byte	4,	0C7,	23,1	0C3, 1	18, 96	, 5	, 9A,	7,	, 12,	, 80,	,0E2,	ØEB,	27,	0B2,	75
ROM:FC7C		byte	9,	83,	2C,	18, 1	1B, 6E	, 5A	,0A0,	52,	, 3B,	, OD6,	,0B3,	29,	0E3,	2F,	84
ROM:FC7C		byte	53,	0D1,	0,0	0ED, 2	20,0FC	,0B1	, 5B,	6A,	OCB,	, OBE ,	, 39,	4A,	4C,	58,	OCF
ROM:FC7C		byte	0D 0,	ØEF,	DAA,I	0FB, J	43, 40	, 33	, 85,	45,	0F9;	, 2,	, 7F,	50,	3C,	9F,	ØA8
ROM:FC7C		byte	51,	0A3,	40,	8F, 9	92, 90	, 38	,0F5,	OBC,	0B6,	, ODA ,	, 21,	10,	ØFF,	0F3,	0D2
ROM:FC7C		byte	OCD,	OC,	13,	0EC, 9	5F, 97	, 44	, 17,	0C4,	0A7,	, 7E,	, 3D,	64,	5D,	19,	73
ROM:FC7C		byte	60,	81,	4F,	0DC, 2	22, 2A	, 90	, 88,	46,	OEE,	, OB8,	, 14,	ØDE,	5E,	ØB,	ØDB
ROM:FC7C		byte	0E0,	32,	ЗA,	0A, ¹	49, 6	, 24	, 5 C,	OC2,	OD 3 ;	, OAC ,	, 62,	91,	95,	0E4,	79
ROM:FC7C		byte	0E7,	0C8,	37,	6D, 8	8D,0D5	, 4E	,0A9,	6C,	, 56,	,0F4,	, ØEA,	65,	7A,	ØAE,	8
ROM:FC7C		byte	ØBA,	78,	25,	2E, 1	1C,0A6	,0B4	,006,	0E8,	ODD ,	, 74,	, 1F,	4B,	ØBD,	8B,	8A
ROM:FC7C		byte	70,	3E,	0B5,	66, 4	48, 3	,0F6	, 0E,	61,	35,	, 57,	,0B9,	86,	001,	1D,	9E
ROM:FC7C		byte	0E1,	0F8,	98,	11, 6	59,0D9	, 8E	, 94,	9B,	, 1E,	, 87,	0E9,	OCE,	55,	28,	ØDF
ROM:FC7C		byte	8C,	0A1,	89,	OD , OE	BF,ØEð	, 42	, 68,	41,	99,	, 2D,	, 0F,	0B0,	54,	OBB,	16
0000FC7C 00	00FC7C: ROM:FC7C	(Synch	roniz	ed wi	th He	x View	w-1)										

RIJNDAEL S-BOX FOR AES

Trustvorks Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

Firmware Analysis Result

• Cryptographic scheme and key generation

GENERATION OF COMMUNICATION KEYS

Field	Length (Byte)	Comment
Constant	1	0x70, 0x50
Serial Number	4	unique to device
Encrypted Data	16	adapted AES-128
Checksum	1	CRC

RF Frame (i.e., "open/close door")

Trustvor

GENERATION OF COMMUNICATION KEYS

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

The static value is hardcoded in the firmware

The encryption scheme is implemented in the firmware.

Kerckhoff's principle

Initial random seed was identical on all our devices

Vulnerability

Initial random seed was identical on all our devices

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

- Low-cost SDR such as the CCC rad1o or HackRF
- The CCC rad1o was available for free at the CCC Camp 2015 ("conference badge")

Your security, our business © 2017, Trustworks KG, https://www.trustworks.at

• Step 1: Record the RF transmission from a BiSecur hand transmitter

• Step 1: Record the RF transmission from a BiSecur hand transmitter

Field	Length (Byte)	Comment
Constant	1	0x70, 0x50
Serial Number	4	unique to device
Encrypted Data	16	adapted AES-128
Checksum	1	CRC

- Step 2: Use the information obtained from an arbitrary hand transmitter* and the RF frame
- We know:

Trust

- Encryption scheme (AES + "magic")
- Static value
- Initial random seed
- Structure of a decrypted message
- Serial number (from recorded RF frame)
- Encrypted payload (from recorded RF frame)

* to protect BiSecur customers, we do not disclose this information

GENERATION OF COMMUNICATION KEYS

- Step 2: Use the information obtained from an arbitrary hand transmitter and the RF frame
- We know:

Trust

- Encryption scheme (AES + "magic")
- Static value
- Initial random seed
- Structure of a decrypted message
- Serial number (from recorded RF frame)
- Encrypted payload (from recorded RF frame)

GENERATION OF COMMUNICATION KEYS

- Step 3: Compute Communication Key candidate
- Candidate is correct if it has the expected plaintext structure

GENERATION OF COMMUNICATION KEYS

• Otherwise repeat (this is the case if the user has manually generated a new key)

Step 4: Obtain the current counter value from the decrypted message
 Serial Number Static

GENERATION OF COMMUNICATION KEYS

• Step 5: Increase the counter value by one, encrypt the message with the obtained Communication Key

- Step 6: Transmit RF frame, door should open
- Proof-of-Concept Demo

Impact Assessment

- Observation: serial numbers of same model hand transmitters bought at the same time were close to each other
- Assumption: Sequential serial numbers --> probably millions of devices in the field
- Not sure if our guess is correct !

0x043F3D68	71.253.352
0x043F3D78	71.253.368
0x046972A0	74.019.488
0x0404F1AB	67.432.875
0x046A2489	74.065.033
0x0462DD51	73,588,049
0x0462DD5A	73.588.058

HSE1 glossy (old working) HSE1 glossy (old defect) HSE1 matte (new) HSE2 black (new) HSE2 white (new) HSE2 in set (new) HSE2 in set (new)

our security, our business © 2017, Trustworks KG, https://www.trustworks.at

How can the Vulnerability be Fixed ?

- Each hand transmitter needs to have its individual random seed value (80-bit)
- Since the random seed is no longer shared between all hand transmitters, an attacker can no longer compute the communication key without brute-forcing the 80-bit random seed

Responsible Disclosure

[https://www.siteground.com/blog/responsible-disclosure]

Responsible Disclosure

- 4.10.2017 Involving the Austrian national CERT team as coordinator, we reported the security vulnerability including a detailed advisory and a suggested security fix so that the manufacturer can fix the issue
- 31.10.2017 Confirmation from CERT that the manufacturer received and understood the security problem

Responsible Disclosure

- [...]: various e-mails and phone calls
- End of Nov. 2017: Meeting with manufacturer: we presented the vulnerability and the suggested security fix
- Dec. 2017: Security fix implemented and in testing phase

Conclusion

- We presented a viable methodology to analyze wireless RF systems with microcontrollers
- We believe that independent security audits are an essential tool to achieve a high level of security in a product
- When it comes to hardware security, it is good to have a Hardware Security lab at hand :-)
- We followed a responsible disclosure process and supported the manufacturer in understanding and fixing the vulnerability
- We will publish the security advisory after this talk (CVE ID: CVE-2017-17910, CVSSv2: 9.7)

Thank you for your Attention !

Trustworks KG Rienoesslgasse 14/17

1040 Wien

Visit our homepage or contact us at:

https://www.trustworks.at Web: E-Mail: office <at> trustworks.at

