
Squeezing a key 
through a carry bit

Sean Devlin, Filippo Valsorda







One month later



The code 

a = a - b 
mod p

a = a - b 

x = a 

a = a + p 



The code 

a = a - b 
mod p

a = a - b 

x = a 

a = a + p 

a = a - b

t = a

t += p

a !?= t



The code 

a = a - b 
mod p

a = a - b 

x = a 

a = a + p 

a < b

a = a - b

t = a

t += p

a !?= t



a = a - b 

x = a 

a = a + p The bug

a = a - b

t = a

t += p

a !?= t



The bug



The bug

Wrong result with 
probability 2-32



A carry propagation bug



ECCCCCCC

Elliptic Curve Cryptography Crash Course for CCC 

• Field: numbers modulo p 

• Points: like (3, 7); fitting an equation 

• Group: a generator point and addition 

• Multiplication: repeated addition



ECCCCCCCC

Elliptic Curve Cryptography Crash Course for CCC (cont.) 

• Multiplication: 5Q = Q + Q + Q + Q + Q 

• ECDH private key: a big integer d 

• ECDH public key: Q = dG (think y = ga) 

• ECDH shared secret: Q2 = dQ1



Double and add

Q2 = dQ1 

d is BIG. Like, 256 bit. 

Can't add Q to itself 2256 times.



Double and add

Q2 = dQ1

1  0  1  0  1  1  1  0  1  0  1  1  0  1

+Q1

Z +Q



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

x2

Z +Q x2

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

x2

Z +Q x2 x2

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

+Q1

Z +Q x2 x2 +Q

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

Z +Q x2 x2 +Q x2

x2

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

Z +Q x2 x2 +Q x2 +Q

+Q1

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

Z +Q x2 x2 +Q x2 +Q x2

x2

Q2 = dQ1



Double and add

1  0  1  0  1  1  1  0  1  0  1  1  0  1

Z +Q x2 x2 +Q x2 +Q x2 x2 ...

x2

Q2 = dQ1



Back to the carry bug



secret = ScalarMult(point, scalar)  ←  Q2 = dQ 

                   └─  p256PointAddAffineAsm 

                     └─  p256SubInternal 💥

attacker supplied secret keysession key



Q1  →  ScalarMult(Q1,                            )

Q2  →  ScalarMult(Q2,                            )

 1  1  1  0  1

Z +Q1 x2 x2 +Q1 x2 +Q1 x2 +Q1 💥

 0  1  1  0  1

Z +Q2 x2 x2 +Q2 x2 +Q2 x2 x2 💥



Q1  →  ScalarMult(Q1,                            )  →  💥

Q2  →  ScalarMult(Q2,                            )  →  ✅

 ?  1  1  0  1

 ?  1  1  0  1

 1  1  1  0  1



Q1  → 
Q2  → 

      0  1  1  0  1

      1  1  1  0  1

Q1  → 
Q2  → 

   0  0  1  1  0  1

   1  0  1  1  0  1

Q1  → 
Q2  → 

0  1  0  1  1  0  1

1  1  0  1  1  0  1

 💥

 💥





Go implementation of ScalarMult

Booth's multiplication in 5-bit windows. 

Precomputed table of 1Q to 16Q. Add, double 5 times. 

01 00010 01110 01010 01010 10010 00001 01111 10011 01101 !!...



Precomp 
table



Multiplication 
loop



Go implementation of ScalarMult

Booth's multiplication in 5-bit windows. 

Precomputed table of 1Q to 16Q. Add, double 5 times. 

Limbs representation: less overlap and aliasing problems. 

01 00010 01110 01010 01010 10010 00001 01111 10011 01101 !!...

{1 0} {15 1} {7 0} {5 0} {5 0} {9 0} {1 0} {8 1} {6 1} {9 1} !!...



Go implementation of ScalarMult

Booth's multiplication in 5-bit windows. 

Precomputed table of 1Q to 16Q. Add, double 5 times. 

Attack one limb at a time, instead of one bit. 

34 limb values → 17 points / 5 key bits on average.

01 00010 01110 01010 01010 10010 00001 01111 10011 01101 !!...



Multiplication 
loop

💥

💥



Assembly 
hook

💥



💥

💥







The first limb

3            3         x2 x2 x2 x2 x2     →   3  x25 

Precomp DoublingLimb

💥



The first limb

3            3         x2 x2 x2 x2 x2     →   3  x25 

3   x2            6         x2 x2 x2 x2 x2     →   3  x26 

3   x2 x2          12         x2 x2 x2 x2 x2     →   3  x27

Precomp DoublingLimb

💥

💥

💥



The first limb

3            3         x2 x2 x2 x2 x2     →   3  x25 

3   x2            6         x2 x2 x2 x2 x2     →   3  x26 

3   x2 x2          12         x2 x2 x2 x2 x2     →   3  x27

Precomp DoublingLimb

💥

💥

💥

🔥

🔥💣



The 
last bits



🕳🐾 🐾🐾 🐾 🐾

Kangaroo jumps depend from the terrain at the start point. 

Let a tracked kangaroo loose. Place a trap at the end.



🕳🐾 🐾🐾 🐾 🐾

🐾🐾🐾 🐾

Kangaroo jumps depend from the terrain at the start point. 

If the wild kangaroo intersects the path at any point, 
it ends up in the trap.



Back to elliptic curves. 

A jump is QN+1 = QN + H(QN) where H is a hash. 

Same starting point, same jump. 

You run from a known starting point, then from dG.  
If you collide, you traceback to d!

🐾🐾



A target

• JSON Object Signing and Encryption, JOSE (JWT) 

• ECDH-ES public key algorithm 

• go-jose and Go 1.8.1 

• Check if the service successfully decrypts payload



Spot instance infrastructure

💻

Sage 
dispatcher /work

/result



Figures!

• Each key: ~52 limbs, modulo the kangaroo 

• Each limb: ~16 points on average 

• Each point: ~226 candidate points 

• (226 * 16) candidate points: ~85 CPU hours 

• 85 CPU hours: $1.26 EC2 spot instances 

• Total: 4,400 CPU hours / $65 on EC2



Demo



Demo



Demo



Filippo Valsorda 
@FiloSottile

Sean Devlin 
@spdevlin 

Thank you! 
No bug is small enough.


