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Arm	Processor	Architecture

Widely	used	in	many	different	areas:	phones,	tablets,	IoT,	HDD,	…

Important	to	understand	what	they	do

Important	to	be	able	to	analyse malware,	security	analysis,	etc.

April	2011:	Started	work	on	formal	specifications	of	ARM	processor	architectures

April	2017:	Public	release	in	machine	readable	form

https://developer.arm.com/products/architecture/a-profile/exploration-tools

Working	with	REMS	@	Cambridge	Uni to	translate	ARM	spec	to	SAIL	to	HOL/OCaml/…
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What	can	you	do	with	an	executable	processor	specification

How	can	you	trust	formally	verified	software?
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ARM	Machine	Readable	Architecture	Specification	

Instructions
Security	features:	memory	protection,	exceptions,	privilege	checks,	TrustZone,	…

Links
- Official	ARM	release	https://developer.arm.com/products/architecture/a-profile/exploration-tools

- HTML	files	(part	of	official	release)	https://www.meriac.com/archex/

- Tools	to	dissect	the	official	release	(incl.	parser)	https://github.com/alastairreid/mra_tools

- Blog	article	about	release	https://alastairreid.github.io/ARM-v8a-xml-release/

- Papers
- “Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

- “End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

- “Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017
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https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml
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https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml
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https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml
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See	also:	https://github.com/gdelugre/ida-arm-system-highlight
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https://www.meriac.com/archex/A64_v83A_ISA/add_addsub_imm.xml
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[sf:"1"; op:"0"; S:"0"; "10001"; shift:"xx"; imm12:"xxxxxxxxxxxx"; Rn:"xxxxx"; Rd:"xxxxx"] 
<-> 
"ADD" " " <Xd|SP> "," " " <Xn|SP> "," " " [ "#" ] <imm> " " [ "," " " <shift> ]

where
<Xd|SP> = RegXSP(UInt(Rd));
<Xn|SP> = RegXSP(UInt(Rn));
<imm>   = UInt(imm12);
<shift> = Optional("LSL #0", 

case shift {
'00' <-> "LSL #0";
'01' <-> "LSL #12";
'1x' <-> RESERVED();

});

Assembler	/	Disassembler https://alastairreid.github.io/bidirectional-assemblers/

See	also:	https://github.com/agustingianni/retools and	https://github.com/nspin/hs-arm
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https://www.meriac.com/archex/A64_v83A_ISA/add_addsub_imm.xml



sf = ‘0’
imm12 = 0x02a
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5
n = 3
datasize = 32

imm = 0x0002a000

operand1 = 0x00000045

result = 0x0002a045

X[5] = 0x0002a045
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Symbolic	Representation

Feed	to	constraint	solver	(e.g.,	Z3	SMT	Solver)

- What	is	the	output	given	input	Y?

- What	input	X	produces	output	Y?

- What	input	X	produces	intermediate	value	Y?

- Generate	a	test	input	that	shows	X	happening

- Cf.	KLEE LLVM	symbolic	execution

Rd    Rn      imm12

Uint(Rd)
Uint(Rn)

ZeroExtend(imm12, 32)

X[n]

imm + operand1

X[d] result

`

https://alastairreid.github.io/validating-specs/





Full	graph	for	one	path	through	the	ADD	instruction:	80-90	nodes

Graph	for	all	paths	through	entire	v8-M	specification:	0.5M	nodes
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From	instructions	to	programs…

Handle	Interrupts

Fetch	Instruction

Execute	Instruction

Handle	Exceptions
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Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off

Large
• v8-A	11,000	test	programs,	>	2	billion	instructions

• v8-M	3,500	test	programs,	>	250	million	instructions

Thorough
• Tests	dark	corners	of	specification

https://alastairreid.github.io/papers/FMCAD_16/
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Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100
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Fuzz	testing	Arm	binaries

External fuzzing

• Branches	in	Arm	binary	used	to	guide	fuzz	tester’s	choice	of	inputs

• Finds	explicit	control	flow

Internal fuzzing

• Branches	in	Arm	specification	used	to	guide	fuzz	tester’s	choice	of	inputs

• Finds	implicit	control	flow

(Symbolic	execution	to	escape	plateaus)
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cf “End-to-end	formal	ISA	verification	of	RISC-V	processors	with	riscv-formal”, Saal Clarke,	1pm	27th December

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016
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cf “End-to-end	formal	ISA	verification	of	RISC-V	processors	with	riscv-formal”, Saal Clarke,	1pm	27th December

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016
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Do	something	awesome!

Known	to	work “Should”	work

- Assembler/disassembler

- Interpreter

- Symbolic	evaluation

- Generate	testcases

- Fuzzing	with	internal	feedback

- Formally	validate	processor	design

- System	register	plugin

- Fuzzing	with	symbolic	execution

- (Information	flow	analysis)

- (Test	LLVM	IR	à ARM	backend)

- (Superoptimizer
http://www.eecs.qmul.ac.uk/~gretay/papers/onward2017.pdf)

- (Convert	to	Coq/HOL/ACL2)
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How	can	you	trust	formally	verified	software?

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat
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(and others)

Do	something	awesome	with	the	spec

Ask	me	questions		alastair.reid@arm.com @alastair_d_reid https://alastairreid.github.io

Talk	to	me	or	Milosch Meriac (@FoolsDelight)	about	white	hacker	jobs at	ARM

Thanks	to	those	who	helped	get	here


