
©	2017	Arm	Limited	

How	Can	You	Trust	
Formally	Verified	

Software?
Alastair	Reid

@alastair_d_reid
ARM	Research

34th Chaos	Communication	Congress

©	2017	Arm	Limited	

Arm	Processor	Architecture

Widely	used	in	many	different	areas:	phones,	tablets,	IoT,	HDD,	…

Important	to	understand	what	they	do

Important	to	be	able	to	analyse malware,	security	analysis,	etc.

April	2011:	Started	work	on	formal	specifications	of	ARM	processor	architectures

April	2017:	Public	release	in	machine	readable	form

https://developer.arm.com/products/architecture/a-profile/exploration-tools

Working	with	REMS	@	Cambridge	Uni to	translate	ARM	spec	to	SAIL	to	HOL/OCaml/…

©	2017	Arm	Limited	

What	can	you	do	with	an	executable	processor	specification

How	can	you	trust	formally	verified	software?

©	2017	Arm	Limited	

ARM	Machine	Readable	Architecture	Specification	

Instructions
Security	features:	memory	protection,	exceptions,	privilege	checks,	TrustZone,	…

Links
- Official	ARM	release	https://developer.arm.com/products/architecture/a-profile/exploration-tools

- HTML	files	(part	of	official	release)	https://www.meriac.com/archex/

- Tools	to	dissect	the	official	release	(incl.	parser)	https://github.com/alastairreid/mra_tools

- Blog	article	about	release	https://alastairreid.github.io/ARM-v8a-xml-release/

- Papers
- “Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

- “End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

- “Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017

©	2017	Arm	Limited	

https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml

©	2017	Arm	Limited	

https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml

©	2017	Arm	Limited	

https://www.meriac.com/archex/ARMv83A-SysReg/AArch32-sctlr.xml

©	2017	Arm	Limited	

MRC	p15,	0,	R0,	c1,	c0,	0

ORR	R0,	R0,	#0x80000

MCR	p15,	0,	R0,	c1,	c0,	0

See	also:	https://github.com/gdelugre/ida-arm-system-highlight

©	2017	Arm	Limited	

MRC	p15,	0,	R0,	c1,	c0,	0

ORR	R0,	R0,	#0x80000

MCR	p15,	0,	R0,	c1,	c0,	0

MRC	R0,	SCTLR

ORR	R0,	R0,	#0x80000

MCR	R0,	SCTLR

See	also:	https://github.com/gdelugre/ida-arm-system-highlight

©	2017	Arm	Limited	

MRC	p15,	0,	R0,	c1,	c0,	0

ORR	R0,	R0,	#0x80000

MCR	p15,	0,	R0,	c1,	c0,	0

MRC	R0,	SCTLR

ORR	R0,	R0,	#0x80000

MCR	R0,	SCTLR

SCTLR.WXN	=	1;

See	also:	https://github.com/gdelugre/ida-arm-system-highlight

©	2017	Arm	Limited	

MRC	p15,	0,	R0,	c1,	c0,	0

ORR	R0,	R0,	#0x80000

MCR	p15,	0,	R0,	c1,	c0,	0

MRC	R0,	SCTLR

ORR	R0,	R0,	#0x80000

MCR	R0,	SCTLR

SCTLR.WXN	=	1;

See	also:	https://github.com/gdelugre/ida-arm-system-highlight

https://www.meriac.com/archex/A64_v83A_ISA/add_addsub_imm.xml

©	2017	Arm	Limited	

[sf:"1"; op:"0"; S:"0"; "10001"; shift:"xx"; imm12:"xxxxxxxxxxxx"; Rn:"xxxxx"; Rd:"xxxxx"]
<->
"ADD" " " <Xd|SP> "," " " <Xn|SP> "," " " ["#"] <imm> " " ["," " " <shift>]

where
<Xd|SP> = RegXSP(UInt(Rd));
<Xn|SP> = RegXSP(UInt(Rn));
<imm> = UInt(imm12);
<shift> = Optional("LSL #0",

case shift {
'00' <-> "LSL #0";
'01' <-> "LSL #12";
'1x' <-> RESERVED();

});

Assembler	/	Disassembler https://alastairreid.github.io/bidirectional-assemblers/

See	also:	https://github.com/agustingianni/retools and	https://github.com/nspin/hs-arm

©	2017	Arm	Limited	

https://www.meriac.com/archex/A64_v83A_ISA/add_addsub_imm.xml

sf = ‘0’
imm12 = 0x02a
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5
n = 3
datasize = 32

imm = 0x0002a000

operand1 = 0x00000045

result = 0x0002a045

X[5] = 0x0002a045

sf = ‘0’
imm12 = 0x02a
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5
n = 3
datasize = 32

imm = 0x0002a000

operand1 = 0x00000045

result = 0x0002a045

X[5] = 0x0002a045

sf = ‘0’
imm12 = 0x02a
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5
n = 3
datasize = 32

imm = 0x0002a000

operand1 = 0x00000045

result = 0x0002a045

X[5] = 0x0002a045

sf = ‘0’
imm12 = 0x02a
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5
n = 3
datasize = 32

imm = 0x0002a000

operand1 = 0x00000045

result = 0x0002a045

X[5] = 0x0002a045

sf = ‘0’
imm12 = 0x02a Rd Rn imm12
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5 Uint(Rd)
n = 3 Uint(Rn)
datasize = 32 32

imm = 0x0002a000 ZeroExtend(imm12, 32)

operand1 = 0x00000045 X[n]

result = 0x0002a045 imm + operand1

X[d] = 0x0002a045 result

sf = ‘0’
imm12 = 0x02a Rd Rn imm12
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5 Uint(Rd)
n = 3 Uint(Rn)
datasize = 32 32

imm = 0x0002a000 ZeroExtend(imm12, 32)

operand1 = 0x00000045 X[n]

result = 0x0002a045 imm + operand1

X[d] = 0x0002a045 result

`

sf = ‘0’
imm12 = 0x02a Rd Rn imm12
shift = ‘01’
Rd = ‘00101’
Rn = ’00011’

d = 5 Uint(Rd)
n = 3 Uint(Rn)
datasize = 32 32

imm = 0x0002a000 ZeroExtend(imm12, 32)

operand1 = 0x00000045 X[n]

result = 0x0002a045 imm + operand1

X[d] = 0x0002a045 result

©	2017	Arm	Limited	

Symbolic	Representation

Feed	to	constraint	solver	(e.g.,	Z3	SMT	Solver)

- What	is	the	output	given	input	Y?

- What	input	X	produces	output	Y?

- What	input	X	produces	intermediate	value	Y?

- Generate	a	test	input	that	shows	X	happening

- Cf.	KLEE LLVM	symbolic	execution

Rd Rn imm12

Uint(Rd)
Uint(Rn)

ZeroExtend(imm12, 32)

X[n]

imm + operand1

X[d] result

`

https://alastairreid.github.io/validating-specs/

Full	graph	for	one	path	through	the	ADD	instruction:	80-90	nodes

Graph	for	all	paths	through	entire	v8-M	specification:	0.5M	nodes

©	2017	Arm	Limited	

From	instructions	to	programs…

Handle	Interrupts

Fetch	Instruction

Execute	Instruction

Handle	Exceptions

©	2017	Arm	Limited	47

Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off

Large
• v8-A	11,000	test	programs,	>	2	billion	instructions

• v8-M	3,500	test	programs,	>	250	million	instructions

Thorough
• Tests	dark	corners	of	specification

https://alastairreid.github.io/papers/FMCAD_16/

©	2017	Arm	Limited	

Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100

©	2017	Arm	Limited	

Fuzz	testing	Arm	binaries

External fuzzing

• Branches	in	Arm	binary	used	to	guide	fuzz	tester’s	choice	of	inputs

• Finds	explicit	control	flow

Internal fuzzing

• Branches	in	Arm	specification	used	to	guide	fuzz	tester’s	choice	of	inputs

• Finds	implicit	control	flow

(Symbolic	execution	to	escape	plateaus)

Memory

R0
-

R15

DecodeFetch

EX MEM WBIF ID

R0
-

R15

cf “End-to-end	formal	ISA	verification	of	RISC-V	processors	with	riscv-formal”, Saal Clarke,	1pm	27th December

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

Memory

R0
-

R15

DecodeFetch

EX MEM WBIF ID

R0
-

R15

πpre

πpost

cf “End-to-end	formal	ISA	verification	of	RISC-V	processors	with	riscv-formal”, Saal Clarke,	1pm	27th December

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

Memory

R0
-

R15

DecodeFetch

EX MEM WBIF ID

R0
-

R15

πpre

πpost

Pre Post_spec

Post_cpu

Spec ==?

cf “End-to-end	formal	ISA	verification	of	RISC-V	processors	with	riscv-formal”, Saal Clarke,	1pm	27th December

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

©	2017	Arm	Limited	

Do	something	awesome!

Known	to	work “Should”	work

- Assembler/disassembler

- Interpreter

- Symbolic	evaluation

- Generate	testcases

- Fuzzing	with	internal	feedback

- Formally	validate	processor	design

- System	register	plugin

- Fuzzing	with	symbolic	execution

- (Information	flow	analysis)

- (Test	LLVM	IR	à ARM	backend)

- (Superoptimizer
http://www.eecs.qmul.ac.uk/~gretay/papers/onward2017.pdf)

- (Convert	to	Coq/HOL/ACL2)

©	2017	Arm	Limited	

How	can	you	trust	formally	verified	software?

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat

©	2017	Arm	Limited	

How	can	you	trust	formally	verified	software?

Program	Specification

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat

©	2017	Arm	Limited	

How	can	you	trust	formally	verified	software?

Program	Specification

Linux
specification

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat

©	2017	Arm	Limited	

How	can	you	trust	formally	verified	software?

Program	Specification

Linux
specification

glibc
specification

glibc
specification

glibc
specification

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat

©	2017	Arm	Limited	

How	can	you	trust	formally	verified	software?

Program	Specification

Linux
specification

ISO-C
specification

glibc
specification

glibc
specification

glibc
specification

Program

More	formal	despair:	Denning,	Fonseca	et	al.
More	formal	hope:	Hyperkernel,	Yggdrasil,	Milawa,	Fiat

©	2017	Arm	Limited	

Alasdair Armstrong (Cambridge U.)
Alex Chadwick (ARM)
Ali Zaidi (ARM)
Anastasios Deligiannis (ARM)
Anthony Fox (Cambridge U.)
Ashan Pathirane (ARM)
Belaji Venu (ARM)
Bradley Smith (ARM)
Brian Foley (ARM)

Curtis Dunham (ARM)
David Gilday (ARM)
David Hoyes (ARM)
David Seal (ARM)
Daniel Bailey (ARM)
Erin Shepherd (ARM)
Francois Botman (ARM)
George Hawes (ARM)
Graeme Barnes (ARM)

Isobel Hooper (ARM)
Jack Andrews (ARM)
Jacob Eapen (ARM)
Jon French (Cambridge U.)
Kathy Gray (Cambridge U.)
Krassy Gochev (ARM)
Lewis Russell (ARM)
Matthew Leach (ARM)
Meenu Gupta (ARM)

Michele Riga (ARM)
Milosch Meriac (ARM)
Nigel Stephens (ARM)
Niyas Sait (ARM)
Peng Wang (ARM)
Peter Sewell (Cambridge U.)
Peter Vrabel (ARM)
Richard Grisenthwaite (ARM)
Rick Chen (ARM)

Simon Bellew (ARM)
Thomas Grocutt (ARM)
Will Deacon (ARM)
Will Keen (ARM)
Wojciech Meyer (ARM)
(and others)

Do	something	awesome	with	the	spec

Ask	me	questions		alastair.reid@arm.com @alastair_d_reid https://alastairreid.github.io

Talk	to	me	or	Milosch Meriac (@FoolsDelight)	about	white	hacker	jobs at	ARM

Thanks	to	those	who	helped	get	here

